Determining the Thermal Efficiency of Firing a Cross Draft Kiln using Methane and Liquefied Petroleum Gas

Ezra Abubakar, Kawahya Pastor Daniel, Iyam Gordy Anthony, Titikus Japheth Ibrahim

Abstract


Thermal efficiency in the ceramic firing process is crucial to reducing energy consumption, emissions of gaseous pollutants and the cost of production. This study, reports on the determination of thermal efficiencies of a traditional 3m x 28m x 2.7m cross draft kiln using the heat balance approach. Results of the study showed  thermal efficiencies of  46.4% and 1.9% for methane and liquefied petroleum gas kiln to 1, 200OC at ambient temperature of 26OC. Findings from the study also showed that only 2.1%, and 32.3% of the thermal energy inputs from methane, and liquefied petroleum gas (LPG) were effectively utilized for the physio-chemical transformation of ceramic ware. Findings also revealed that thermal energy wastes, in the form of heat losses through radiation, and convection accounted for up to 280,1522.7 kcal/kg, and 102,338.592 kcal/kg for both methane, and LPG fired kilns respectively. Other sources of heat wastages identified included heat lost in the form of waste heat and combusted exhaust gas. It is hoped that findings from this study, will aid in addressing the gross thermal inefficiency of the traditional cross draft kiln.

 

Keywords: Ceramic, Firing, Greenhouse gas, Methane, Thermal efficiency.


Keywords


Key Ceramic; Firing; Greenhouse gas; Methane; Thermal efficiency.

Full Text:

FULL TEXT PDF

References


K. A. Le. “Optimization of energy usage in a ceramic kiln using pinch technique,” Chem. Eng. Trans., vol. 63, pp. 313-318, May, 2018, doi: https://doi.org/10.3303/CET1863053

E. Monfort, A. Mezquita, R. Granel, E. Vanquer, A. Escrig, A. Miralles, and V. Zaera. “Analysis of energy consumptions and carbon dioxide emissions in ceramic tile manufacture”, Bol. de la Socie. Esp. de Cera. y Vid., vol. 49, no.4, pp. 303-310, Jul. 2010, Accessed: October 10, 2021 [Online]. Available: (https://www.scirp.org/)

S. A. Hussain, M. Farooq, M. Amjad, F. Riaz, Z. U. R. Tahir, M. Sultan,I. Hussain, M. A. Shakir, M. A. Qyyum, and N. Han “Thermal analysis and energy efficiency improvements in tunnel kiln for a sustainable environment”, Proce.,vol. 9, no. 9. pp. 1692, Aug. 2021, doi: https://doi.org/10.3390/pr9091629

M. C. Oliveira, M. Iten, L. P. Cruz, and H. Monteiro. “Review on energy efficiency progresses, technologies, and strategies in the ceramic sector focusing on waste heat recovery”, Ener., vol.13, no. 22, pp.1-24, Nov. 2020, doi: 10.3390/en13226096

P. Kumari, R. Krishan, and L. K. Sharma. “Energy-efficient tunnel kilns with superlative firing atmosphere for ceramic industries”, Inter. Jour. of Innov. Scie. Eng. and Tech., vol. 2, no.7, pp. 588-590, Jul. 2015.

G. Cantore, M. Milan, L. Montorsi, and F. Paltrinieri. “Energy efficiency analysis of an entire ceramic kiln: A numerical approach”, Mod, Measure. and Cont. B., vol. 87, no. 3 pp. 159-166, May, 2018, doi: https://doi.org/10.18280/mmc_b.870307

V. Plesu, J. S. Puicasas, G. B. Surroca, J. Bonet, A. E. B. A. Ruiz, and J. L. Tuluc. “Process intensification in biodiesel production with energy reduction by pinch analysis”, Ener., vol. 79, pp. 273-287,Jan.2015, doi: 10.`1016/j.energy.2014.11.013

S. Bandyopadhyay and N. B. Desai. “Cost optimal energy sector planning: A pinch analysis approach”, Jour. of Clea. Prod., vol. 136, pp. 246-253, Nov. 2016, doi: https://doi.org/10.1016/j.jclepro.2016.03.077

K. O’Reilly and J. Jeswiet. “Improving industrial energy efficiency through the implementation of waste heat recovery systems”, Trans.-Can. Socie. for Mech. Eng., vol. 39, no. 1, pp. 125-136, Sep. 2014, doi:10.1139/tcsme-2015-0010

M. Fiehl, J. Leicher, A. Giese, A. Gomer, K. Fleischmann, and B. S. Spielmann, “Biogas as a co-firing fuel in thermal processing industries: Implementation in glass melting furnace”, Ener. Prece., vol. 120, pp. 302-308, Aug. 2017, doi: 10.1016/j.egypro.2017.07.221

C. W. Sinton. “Is there a place for renewable energy in ceramics? glass manufacturing,? Amer. Cera. Socie. Bull., vol.84, no. 10, pp.18-22, Oct. 2015

A. Mezquita, J. Boix, B. E. Monfort and G. Mallol. “Energy-saving in ceramic tile kilns: Cooling gas heat recovery, Appl. Therm. Eng.I”, vol. 65, no. 1-2. pp. 102-110, Apr. 2014, doi: https://doi.org.10.1016/j.applthermaleng.2014.01.002

D. E. Winterborne Advanced thermodynamics for Engineers Cambridge, UK: Butterworth-Heinemann, 1997.

United Nations Industrial Development Organization. Handy Manual on Energy Conservation in Ceramic Industry. Accessed: October 10, 2021 [Online]. Available: http://portalcdi.mecon.gov.ar)

P. A. Nwofe and P.E. Agbo.

“Enhancement of biogas yield from cow

dung and rice husk using guano as

nitrogen source”, Inter. Jour. of

Sustain. and Gre. Ener., vol. 4, pp. 66–72, Jan. 2015, doi: 10.11648/j.ijrse.20150403.11

N. I. H. A. Aziz, M. M. Hanafiah and S. H. Cheewala. “A review of life cycle analysis of biogas production: challenges and future perspectives in Malaysia”, Biom. and Bioen.,vol. 122, pp.361-374, Mar. 2019, doi: https://10.1016/j.biobioe.2019.01.047

P. Garcia-Gutierrez, J. Jacquemin, C. MacCrellis, I. Dimitriou, S. F. R. Taylor, C. Hardacre, and R. W. K. Allen. “Techno-economic feasibility of selected CO2 capture process from biogas stream using ionic liquids as physical absorbents”, Ener. and Fuels, vol. 30, no. 6 pp. 5052-5064, May, 2016, doi: https://doi.org/10/1021/acs.energyfuels.6b00364

Y. Gao, J. Jiang, Y. Meng, F. Yan, F. Yan, and A. Aihemaiti. “A review of recent developments in hydrogen production via biogas dry reforming”, Ener. Conver. and Manag., vol. 171, pp. 133-155, Sep. 2018, doi: 10.1016/j.enconman.2018.05.083

E. Alper and O. Yuksel. “CO2 Utilization: Developments in conversion processes”, Petro.,vol. 3, no. 1, pp. 109-126, Mar. 2016, https://doi.org/10.1016/j.petlm.2016.11.003

F.L. Olsen. Kiln Book: Materials, Specifications, and Construction. Iola, USA: Krause Publication, 2001.

N. H. S. Ray, M. K. Mohanty and R. C. Mohanty. “Water scrubbing of biogas produced from kitchen wastes for the enrichment and bottling in LPG cylinder for cooking applications”, Inter. Jour. of Innov. Scie., Eng. and Tech.,vol. 2, no.5 pp. 45-53, May, 2021

R. S. Gomez, T. R. N. Porto, H. L. F. Magalhaes, G. Moreira, A. M. M. C. N. Andre, R. B. F. Melo and A. G. B. Lima. “Natural gas intermittent kiln for the ceramic industry: A Transient thermal analysis”, Ener., vol.12, no. 8, pp.1568, 2019, doi:10.3390/en12081568

M. Imran, H. A. Muhammad, F. Sher, M. Farooq, Y-J. Balik and Z. Rehman. “Exergoeconomic optimization of a binary geothermal power plant”, in thermodynamic analysis and optimization of geothermal plant Else. Pp. 315-326, Jan. 2021.




DOI: http://dx.doi.org/10.22135/sje.2022.7.1.47-55

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sriwijaya Journal of Environment

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.