Optimization of Arthrospira platensis Growth by Adding Different Carbon Sources on the Culture Media of Catfish Cultivation Waste and Technical Fertilizer

Nyayu Nurul Husna, Marini Wijayanti, Nuni Gofar

Abstract


Nutrients (C, N, and P) can affect the growth and biochemical content of Arthrospira platensis. Ethanol can be a potential carbon source compared to glucose and acetic acid. Glycerol is also potential as a carbon source for the growth of Arthrospira platensis. This research was carried out from June to July 2021 at the Aquaculture Laboratory and Experimental Pond Laboratory of the Aquaculture Study Program, Sriwijaya University. The research method used Completely Randomized Design (CRD) factorial with 2 factors consisting of the first factor with 3 treatments and the second factor with 2 treatments and 3 replications. The inoculant was cultured in liquid fertilizer technical F/2 media for culture stock as initial inoculum with a density of ± 1.0 g L-ˡ. Parameters observed were the density, the specific growth rate, and water quality. The results showed that M1S3 treatment had the highest density with a value reaching 4.95 g L-1 and the highest specific growth rate of 0,33% per day. ANOVA test result showed that the addition of carbon sources in the culture media of fertilizer and technical waste had a significant effect (P<0.05) on the growth rate of Arthrospira platensis. The water quality parameters of each treatment were suitable for Arthrospira platensis culture.


Keywords


growth, addition, Arthrospira platensis, different carbon sources, culture media

Full Text:

FULL TEXT PDF

References


A. Juneja, R. M. Ceballos, and G. S. Murthy, “Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review,” Energies, vol. 6, no. 9, pp. 4607–4638, 2013.

D. B. D. Raja Guk-Guk, “Profiles of Fatty Acid And Beta Carotene of Spirulina platensis Cultured in Technical Media and Catfish Culture Wastewater (Profil Asam Lemak dan Beta Karoten Spirulina platensis yang dikultur di Media Teknis dan Air Limbah Budidaya Ikan Lele),” Sriwijaya University, 2020.

M. T. Golmakani, K. Rezaei, S. Mazidi, and S. H. Razavi, “γ-Linolenic acid production by Arthrospira platensis using different carbon sources,” Eur. J. Lipid Sci. Technol., vol. 114, no. 3, pp. 306–314, 2012.

M. Pagliaro and M. Ross, The Future of Glycerol, 2nd Editio., vol. 2008, no. 6. The Royal Society of Chemistry, 2008.

C. F. Hansen et al., “A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter,” Anim. Prod. Sci., vol. 49, no. 2, pp. 154–161, 2009.

Y. Liang, N. Sarkany, Y. Cui, and J. W. Blackburn, “Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation,” Bioresour. Technol., vol. 101, no. 17, pp. 6745–6750, 2010.

A. Hidayani, “Effect of different ph and salinity of catfish rearing wastewater for spirulina platensis growth and phycocyanin rendement,” Sriwijaya University, 2019.

S. Afriani, Uju, and I. Setyaningsih, “Chemical Composition of Spirulina platensis Cultivated in Photobioreactors with Different Photoperiods (Komposisi kimia spirulina plantesis yang dikultivasi dalam fotobioreaktor dengan fotoperiode berbeda),” J. Pengolah. Has. Perikan. Indones., vol. 21, no. 3, pp. 471–479, 2018.

K. A. Hanafiah, Rancangan percobaan : Teori dan aplikasi, 6th ed. Jakarta, Indonesia: Raja Grafindo Persada, 2001.

A. Vonshak, Spirulina Platensis Arthrospira: Physiology, Cell-Biology And Biotechnology. CRC Press, 1997.

S. C. Wuang, M. C. Khin, P. Q. D. Chua, and Y. D. Luo, “Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers,” Algal Res., vol. 15, pp. 59–64, 2016.

Nurmayana, “Effect of Different Carbon Sources on The Growth of Spirulina sp. at The Laboratory Scale (Pengaruh sumber karbon yang berbeda terhadap pertumbuhan Spirulina sp. pada skala laboratorium),” Mataram University, 2019.

N. K. E. Juniantari, A. A. M. D. Anggreni, and I. B. W. Gunam, “Effect of Media Type on Growth (Pengaruh Jenis Media terhadap Pertumbuhan Nannochloropsis sp.),” J. Rekayasa dan Manaj. Agroindustri, vol. 3, no. 2, pp. 1–9, 2015.

F. Astiani, I. Dewiyanti, and S. Mellisa, “Effect of Different Culture Media on Growth Rate and Biomass of Spirulina sp. (Pengaruh Media Kultur Yang Berbeda Terhadap Laju Pertumbuhan Dan Biomassa Spirulina sp.),” J. Ilm. Mhs. Kelaut. dan Perikan. Unsyiah, vol. 1, no. 3, pp. 441–447, 2016.

M. Kawaroe, T. Prartono, A. Rachmat, D. W. Sari, and D. Augustine, “Specific Growth Rate and Fatty Acid Content in Microalgae Spirulina platensis, Isochrysis sp., and Porphyridium cruentum (Laju Pertumbuhan Spesifik dan Kandungan Asam Lemak pada Mikroalga Spirulina platensis, Isochrysis sp. dan Porphyridium cruentum),” Ilmu Kelaut., vol. 17, no. 3, pp. 125–131, 2012.

F. Y. A. Sari, I. M. A. Suryajaya, and Hadiyanto, “Cultivation of Microalgae Spirulina platensis in Pome Media with Variations in Pome Concentration and Nutrient Amount Composition (Kultivasi Mikroalga Spirulina platensis dalam Media Pome dengan Variasi Konsentrasi Pome dan Komposisi Jumlah Nutrien),” J. Teknol. Kim. dan Ind., vol. 1, no. 1, pp. 487–494, 2012.

M. Muliani, E. Ayuzar, and M. C. Amri, “The effect of vermi compost fermented with different doses in Spirulina sp culture (Pengaruh pemberian pupuk kascing (bekas cacing) yang difermentasi dengan dosis yang berbeda dalam kultur Spirulina sp.),” Acta Aquat. Aquat. Sci. J., vol. 5, no. 1, pp. 30–35, 2018.

S. Maryam and G. Diansyah, “The Effect of Phytoplankton Feeding (Tetraselmis sp., Porphyridium sp., and Chaetoceros sp.) towards Growth Rate of Zooplankton Diaphanosoma sp. On Laboratory Scale (Pengaruh Pemberian Pakan Fitoplankton (Tetraselmis sp., Porphyridium sp. dan Chaetoceros ,” Maspari, vol. 7, no. 2, pp. 41–50, 2015.

N. D. A. Wulandari, “Penggunaan Media Alternatif Pada Produksi Spirulina fusiformis,” IPB, 2011.

D. R. Amanatin and T. Nurhidayati, “Effect of Combination Concentration of Bean sprout Extract (MET) with Urea Fertilizer on Protein Levels of Spirulina sp. (Pengaruh Kombinasi Konsentrasi Media Ekstrak Tauge ( MET ) dengan Pupuk Urea terhadap Kadar Protein Spirulina sp .),” J. Sains dan Seni Pomits, vol. 2, no. 2, pp. E182–E185, 2013.

O. Ciferri, “Spirulina, the edible microorganism,” Microbiol. Rev., vol. 47, no. 4, pp. 551–578, 1983.

J. M. Fox, Intensive Algal Culture Techniques In: CRC Handbook of Marine Culture Series., Crustacean. Boca Rotan. Florida: CRC Press Inc., 1983.

D. E. Satriaji, M. Zainuri, and I. Widowati, “Study of growth and N, P content of microalgae chlorella vulgaris cultivated in different culture media and light intensity,” J. Teknol., vol. 78, no. 4–2, pp. 27–31, 2016.

N. B. P. Utomo, Winarti, and A. Erlina, “Growth of Spirulina platensis Cultured with Inorganic Fertilizer (Urea, TSP and ZA) and Chicken Manure (Pertumbuhan Spirulina platensis yang dikultur dengan Pupuk Inorganik (Urea, TSP dan ZA) dan Kotoran Ayam),” Akuakultur Indones., vol. 4, no. 1, pp. 63–67, 2005.




DOI: http://dx.doi.org/10.22135/sje.2022.7.2.56-60

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sriwijaya Journal of Environment

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.