Microcosmic Study on Heterotrophic CO2 Emission from Tropical Peat as Related to Water Table Modification

Dewi Lastuti, Sabarudin Kadir, Dedik Budianta



ABSTRACT: A microcosmic experiment was conducted to estimate CO2 emission from peat soils.  Two treatments, peat humification levels (F = Fibric, H = Hemic, S = Sapric) and water levels (G0 = 10 cm; G1= 0 cm; G2 = -10 cm; G3 = -20 cm), were tested and arranged according to factorial randomized complete block design (RCBD) with 3 replicates.  Current study revealed that CO2 emission was significantly affected (p<0.01) by peat humification levels and water levels.  The sapric peat emitted significantly higher CO2 (696.69 b ± 43.95 mg CO2 g-1 peat d-1) than hemic (504.62 a ± 105.72 mg CO2 g-1 peat d-1)and fibric (492.56 a ± 90.69 mg CO2 g-1 peat d-1)peats.  Decreases in water level shifted anaerobic condition into aerobic condition, causing significant increases in CO2 emission.  Regardless of peat humification levels, CO2 emission and water table depth in current study showed a nonlinier relationship.  It seems that a threshold water tables for enhanced CO2 emissions was within the range of -10 to -20 cm below peat surface.

Keywords : microcosmic, peat, humification, CO2 emission.


ABSTRAK (Indonesian): Tujuan percobaan skala mikrokosm ini adalah untuk estimasi emisi CO2 dari tanah gambut.  Pengaruh 2 (dua) perlakuan, yaitu tingkat humifikasi gambut (F = Fibrik, H = Hemik, S = Saprik) dan tinggi muka air (G0 = 10 cm; G1= 0 cm; G2 = -10 cm; G3 = -20 cm), disusun menurut Rancangan Acak Lengkap Faktorial (RALF) dengan 3 (tiga) ulangan.  Hasil penelitian menunjukkan bahwa perlakuan tingkat humifikasi gambut dan tinggi muka air mempengaruhi emisi CO2 secara nyata  (p<0.01).  Emisi CO2 dari gambut dengan tingkat humifikasi saprik menghasilkan emisi CO2 secara nyata lebih tinggi (696.69 b ± 43.95 mg CO2 g-1 gambut hr-1) dibandingkan dengan emisi CO2 dari gambut hemik (504.62 a ± 105.72 mg CO2 g-1 gambut hr-1) dan fibrik (492.56 a ± 90.69 mg CO2 g-1 gambut hr-1).  Penelitian ini juga menunjukkan bahwa perubahan suasana reduktif menjadi oksifatif akibat penurunan muka air juga diikuti oleh peningkatan emisi CO2 secara nyata pada semua tingkat humifikasi gambut.  Besaran emisi CO2 dan muka air tanah menunjukkan pola hubungan nonlinier pada ketiga tingkat kematangan gambut.  Hasil penelitian ini juga menunjukkan bahwa tinggi muka air pada ketiga tingkat kematangan gambut yang menjadi pemicu percepatan emisi CO2 adalah berada pada kisaran -10 to -20 cm di bawah permukaan gambut.

Kata kunci : mikrokosm, gambut, humifikasi, emisi CO2.

Full Text:



Jaenicke, J., Rieley, J.O., and Mott, C. 2008. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158.

Page, S.E., Rieley, J.O., and Banks, C.J. 2011. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17:798–818.

Hooijer, A., Page, S., Canadell, J.G., Silvius, M., Kwadijk J., Wösten, H., and Jauhiainen, J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514.

Gomeiro, T., Paoletti, M.G., and Pimente, D. 2010. Biofuels: efficiency, ethics and limits to human appropriation of ecosystem services. J. Agric Environ. Ethic 23:403–434.

Maljanen, M., Komulainen, V.M., Hytönen, J., Martikainen, P.J., and Laine, J. 2004. Carbon dioxde, nitous oxide and methane dynamics in boreal organic agricultural soils with different soil management. Soil Biol. Biochem. 36:1808–1808.

Pitkänen, A., Turunen, J., Tahvanainen, T., and Simola, H. 2013. Carbon storage in a partially forestry-drained boreal mire determined through peat column inventories. Boreal Enviro. Res. 18:223–234.

Jauhiainen, J., A. Hooijer, and S. E. Page. 2012. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9:617–630.

Couwenberg, J., Dommain, R., and Joosten, H. 2010. Greenhouse gas fluxes from tropical peatlands in Southeast Asia. Glob. Change Biol. 16:1715–1732.

Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. 2008. Land clearing and the biofuel carbon debt. Science 319(29):1235–1238.

Melling, L., Hatano, R., and Goh, K.J. 2005. Methane flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol. Chem. 37:1445–1453.

Melling, L., Hatano, R., and Goh, K.J. 2007. Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Sci. Plant Nutr. 53:729-805.

Reijnders, L., and Huijbregts, M.A.J. 2008. Palm oil and the emission of carbon-based greenhouse gases, J. Clean. Prod. 16:477–482.

Kroon, P.S., Schrier-Uijl, A.P., Hensen, A., Veenendaal, E.M., and Jonker, H.J.J. 2010. Annual balances of CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. Eur. J. Soil Sci. 6(5):773–784.

Veenendaal, E.M., Kolle, O., Leffelaar, P.S., Schrier-Uijl, A.P., Huissteden, J. van, Walsem, J. van, Möller, F., and Berendse, F. 2007. CO2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils, Biogeosciences 4:1027–1040.

Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R, and Osaki, M. 2007. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob. Change Biol. 13:412–425.

Dradjad, M., Soekodarmodjo, S., Shodiq, Hidayat, M., and Nitisapto, M: Subsidence of peat soils in the tidal swamp lands of Barambai, South Kalimantan. J. Ilmu Tanah dan Lingk. 4:32–40.

Hooijer, A. Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A., and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9:1053–1071.

Reiche1, M., G. Gleixner, and K. Küsel1. 2010. Effect of peat quality on microbial greenhouse gas formation in an acidic fen. Biogeosciences 7:187–198.

Schmidt, F.H., and Ferguson, J.H.A. 1951. Rainfall type based on wet and dry period ratios for Indonesia with western New Guinea, Verhandelingen Djawatan Meterologi de Geofisik, Djakarta.

Winda, P., and Sabaruddin. 2014. Estimating direct emission of nitrous oxide (N2O) from chemical N fertilizer application to peatland under oil palm plantation. Proc. of Nat. Sem. on Climate Change Mitigation and Adaptation toward Sustainable Forest and Land Management, Jakarta, Indonesia, pp. 231–236.

von Post, L., and Granlund, E. 1924. Södra Sveriges Torvtillgångar I (Peat resources in southern Sweden I). Sveriges Geologiska Undersökning C 335(19):1–128, 1924.

Isermeyer, H. 1952. Estimation of soil respiration in closed jars. In Alef, K., Nannipieri, P. (Eds). Method in Applied Soil Microiology and Biochemistry. London, p. 214–216.

Vien, D.M., Phuong, N.M., Jauhiainen, J., and Guing, V. T. 2010. Carbon dioxide emission from peatland in relation to hydrology, peat moisture, humification at the Vo Doi national partk, Vietnam. 19th World Congress of Soil Sci., Soil Solutions for a Changing World. 1-6 August 2010, Brisbane, Australia.

Gogo, S., and Pearce, D.M.E. 2009. Saturation of raised bog peat exchange sites by Pb²+ and Al³+ stimulates CH4 production. Soil Biol. Biochem. 41(9):2025–2028.

Dariah, A., Fahmuddin, A., Susanti, E., and Jubaedah. 2013. Relationship between sampling distance and carbon dioxide emission under oil palm plantation, J. Trop. Soils 18(2):125–130.

Silvola J, Alm, J., Aklholm, U., Nykanen, H., and Martikainen, P.J. 1996. Carbon dioxide fluxes from peat in boreal mires under varying temperature and moisture condition. J. Ecol., 84:219–228.

Freeman, C., Ostle, N., and Kang, H. 2001. An Enzymic ‘latch’ on global carbon store: a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409:149–149.

Levy, P. E., Gray, A., Leeson, S.R., Gaiawyn, J., Kelly, M.P.C., Cooper, M.D.A., Dinsmore, K.J., Jones, S.K., and Sheppard, L.J. 2011. Quantification of uncertainty in trace gas fluxes measured by the static chamber method. Eur. J. Soil Sci. 62:811–821.

Hooijer, A. Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A., and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071.

Wang, W., Ohseb. K, and Liuc, J. 2005. Contribution of root respiration to soil respiration in a C3/C4 mixed grassland. J. Bioscience 30:507–514.

DOI: http://dx.doi.org/10.22135/sje.2016.1.1.5-9


  • There are currently no refbacks.