Transesterification of Tropical Edible Oils to Biodiesel Using Catalyst From Scylla serrata
Abstract
Abstract: Scylla serata shell was decomposed at various temperatures ranging from 700-1100 oC to obtain calcium oxide. Calcium oxide from decomposed Scylla serrata shell was characterized through X-Ray analysis, FTIR spectroscopy, and morphology analysis. Furthermore, decomposed Scylla serrata shell was used as catalyst for transesterification of tropical edible oils to form biodiesel. Biodiesel was characterized through density, viscosity, fatty acid value, and iodine number. The results showed that decomposed Scylla serrata shell at 900 oC could produce calcium oxide similar with standard, which was indicated from X-ray powder diffraction pattern of decomposed shell with JCPDS data. FTIR spectrum showed that main vibration of calcium oxide was observed at 393 cm-1. Morphology analysis using SEM indicated that uniform calcium oxide was obtained after decomposition. The use of decomposed shell as base catalyst for transesterification of tropical edible oils resulted biodiesel with density, viscosity, fatty acid value, and iodine number appropriated with SNI standard.
Keywords: transesterification, edible oils, biodiesel, Scylla serrata
Abstrak (Indonesian): Scyalla serrata telah didekomposisi pada berbagai suhu dari 700-1100 oC untuk diperoleh kalsium oksida. Kalsium oksida hasil dekomposisi dari cangkang Scylla serrata dikarakterisasi melalui pengukuran sinar X, analisis FTIR, dan analisis morfologi. Lebih lanjut, dekomposisi cangkang Scylla serrata digunakan sebagai katalis transesterifikasi minyak yang dimakan dari daerah tropis menjadi biodisel. Biodiesel dikarakterisasi melalui penentuan densitas, viskositas, nilai asam lemak, dan bilangan iod. Hasil penelitian menunjukkan bahwa dekomposisi cangkang Scylla serrata pada 900 oC dapat menghasilkan kalsium oksida mirip kalsium oksida standar yang diindikasikan dari pola difraksi XRD yang mirip data JCPDS. Spektrum FTIR menunjukkan vibrasi utama kalsium oksida teramati pada bilangan gelombang 393 cm-1. Analisis morfologi menggunakan SEM menunjukkan bahwa bentuk yang lebih seragam diperoleh setelah proses dekomposisi. Penggunaan cangkang hasil dekomposisi sebagai katalis basa untuk transesterifikasi minyak yang dimakan dari daerah tropis menghasilkan biodisel dengan densitas, viskositas, nilai asam lemak, dan bilangan iod yang sesuai dengan standar SNI.
Kata kunci: transesterifikasi, minyak yang dimakan dari daerah tropis, biodiesel, Scylla serrata
Full Text:
FULL TEXT PDFReferences
S. Ramkumar and V. Kirubakaran, “Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: A critical review,” Energy Convers. Manag., vol. 118, pp. 155–169, 2016.
B. K. Uprety, W. Chaiwong, C. Ewelike, and S. K. Rakshit, “Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity,” Energy Convers. Manag., vol. 115, pp. 191–199, 2016.
H. Jeon, D. J. Kim, S. J. Kim, and J. H. Kim, “Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production,” Fuel Process. Technol., vol. 116, pp. 325–331, 2013.
Y. Tang, J. Xu, J. Zhang, and Y. Lu, “Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts,” J. Clean. Prod., vol. 42, pp. 198–203, 2013.
A. M. Doyle, T. M. Albayati, A. S. Abbas, and Z. T. Alismaeel, “Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin,” Renew. Energy, vol. 97, pp. 19–23, 2016.
Y.-T. Wang, Z. Fang, F. Zhang, and B.-J. Xue, “One-step production of biodiesel from oils with high acid value by activated Mg–Al hydrotalcite nanoparticles,” Bioresour. Technol., vol. 193, pp. 84–89, 2015.
R. Shan, G. Chen, B. Yan, J. Shi, and C. Liu, “Porous CaO-based catalyst derived from PSS-induced mineralization for biodiesel production enhancement,” Energy Convers. Manag., vol. 106, pp. 405–413, 2015.
J. Boro, L. J. Konwar, A. J. Thakur, and D. Deka, “Ba doped CaO derived from waste shells of T striatula (TS-CaO) as heterogeneous catalyst for biodiesel production,” Fuel, vol. 129, pp. 182–187, 2014.
N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop, and K. Faungnawakij, “Waste shells of mollusk and egg as biodiesel production catalysts,” 2010.
A. Lesbani, P. Tamba, R. Mohadi, and F. Fahmariyanti, “PREPARATION OF CALCIUM OXIDE FROM Achatina fulica AS CATALYST FOR PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL,” Indones. J. Chem., vol. 13, no. 2, pp. 176–180, 2013.
S. Niju, K. M. Meera, S. Begum, and N. Anantharaman, “Modification of egg shell and its application in biodiesel production,” J. Saudi Chem. Soc., vol. 18, no. 5, pp. 702–706, 2014.
S. Sirisomboonchai, M. Abuduwayiti, G. Guan, C. Samart, S. Abliz, X. Hao, K. Kusakabe, and A. Abudula, “Biodiesel production from waste cooking oil using calcined scallop shell as catalyst,” Energy Convers. Manag., vol. 95, pp. 242–247, May 2015.
A. Lesbani, Y. Susi, M. Verawaty, R. Mohadi, and R. Mohadi, “Calcium Oxide Decomposed From Chicken’s and Goat’s Bones as Catalyst For Converting Discarded Cooking Oil to be Biodiesel,” Aceh Int. J. Sci. Technol., vol. 4, no. 1, Jan. 2015.
W. Roschat, T. Siritanon, B. Yoosuk, and V. Promarak, “Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst,” Energy Convers. Manag., vol. 108, pp. 459–467, 2016.
DOI: http://dx.doi.org/10.22135/sje.2016.1.2.24-27
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Sriwijaya Journal of Environment