Biodiversity of Echinodermata in Marsegu Island

Bijaya Latupono, Fredy Leiwakabessy, Dominggus Rumahlatu

Abstract


Echinoderms are key species that govern the structure and balance of communities and influence the sustainability of other organisms in different types of ecosystems in sea water. This research aimed at examining the biodiversity of echinoderms, and environmental physical-chemical factors that affect the diversity of echinoderms in coastal waters of Marsegu Island. The data were collected with direct observation and all research variables were recorded. The data collection of echinodermata type was done on each plot in the middle intertidal zone and the lower intertidal zone. The results of this research found that the population of echinoderms in coastal water of Marsegu Island was composed of 4 classes, namely Ophiuroidea, Asteroidea, Echinoidea and Holothuriodea. The most common type found was Asteroidea which consisted of 3 families, 4 genera and 4 species. The results of observation showed there was a difference in echinoderm species found in the middle intertidal zone and the lower intertidal zone. The number of echinoderms species found in the middle intertidal zone was 8 species, while in the lower intertidal zone was 10 species, and there were some species that were not found in the middle intertidal zone, but they were found in the lower intertidal zone, namely Ophiopholis aculeafa, Linckia laevagata and Protoreaster nodusus. The Synapta maculata species was found in the lower intertidal zone, but it was not found in the midle intertidal zone. About 52% variation in echinoderms diversity can be explained by the regression equation model, while the remaining 48% was the influence of other factors that could not be explained by the regression equation model.


Full Text:

FULL TEXT PDF

References


Iken, K., Konar, B., Benedetti-Cecchi, L., Cruz-Motta, J.J., Knowlton, A. 2010. Large-Scale Spatial Distribution Patterns of Echinodjerms in Nearshore Rocky Habitats. PLoS ONE 5(11): e13845. doi:10.1371/journal.pone.0013845.

Williams, S & García-Sais, W. 2010. Temporal and Spatial Distribution Patterns of Echinoderm Larvae in La Parguera, Puerto Rico. Int. J. Trop. Biol. 58(3): 81-88.

Supono, Lane, D.J.W., & Susetiono. 2014. Echinoderm fauna of the Lembeh Strait, North Sulawesi: Inventory and Distibution Review. Mar. Res. Indonesia, 39(2): 51−61.

Campbell, A. 2008. Managing Australian landscapes in a changing climate: a climate change primer for regional natural resource management bodies. Australian Government, Department of Climate Change, Canberra, Australia.

Llacuna, M.E.J., Walag, A.M.P., & Villaluz, E.A. 2016. Diversity and dispersion patterns of echinoderms in Babanlagan, Talisayan, Misamis Oriental, Philippines. Environmental and Experimental Biology, 14: 213–217. http://doi.org/10.22364/eeb.14.28.

Petović, S., & Krpo-Ćetković, J. 2016. How Depth and Substratum Type Affect Diversity and Distribution Patterns of Echinoderms on the Continental Shelf in the South-eastern Adriatic Sea? Acta zool. bulg. 68(1: 89-96.

Bellwood, D.R., Hughes, T.P., Folke, C., & Nyström, M. 2004. Confronting the coral reef crisis. Nature, 429(6994): 827-833.

Alvarado, J.J., Guzman, H.M., & Breedy, O. 2012. Distribution and diversity of echinoderms (Asteroidea, Echinoidea, Holothuroidea) in the islands of the Gulf of Chiriqui, Panama. Revista de Biología Marina y Oceanografía, 47(1): 13-22.

Chenelot, H., Iken, K., Konar, B., & Edwards, M. 2006. Spatial and Temporal Distribution of Echinoderms in Rocky Nearshore Areas of Alaska. The Nagisa World Congress: 11-28.

Gutt, J.. & Starmans, A. 2003. Patchiness of the megabenthos at small scales: ecological conclusions by examples from polar shelves. Polar Biology, 26: 276-278.

Hunt, H.L., & Scheibling, R.E. 2001. Patch dynamics of mussels on rocky shores: integrating process to understand pattern. Ecology, 82: 3213-3231.

Walag, A.M.P., & Canencia, M.O.P. 2016. Physico-chemical parameters and macrobenthic invertebrates of the intertidal zone of Gusa, Cagayan de Oro City, Philippines. AES Bioflux, 8: 71–82.

Lawrence J.M., & Herrera, J. 2000. Stress and deviant reproduction in echinoderms. Zool. Stud. 39: 151–171

Birtles, R.A. 1992. Soft-Sediment Marine Invertebrates of Southeast Asia and Australia: A Gueide to Identification. Sydney: In Press.

Brower, J.E., Zar, J.H., & Ende, C.N. 1990. Field and Laboratory Methods for General Ecology. 3rd ed. WCB Publishers

Fly, E.K., Monaco, C.J., Pincebourde, S., & Tullis, A. 2012. The influence of intertidal location and temperature on the metabolic cost of emersion in Pisaster ochraceus. Journal of Experimental Marine Biology and Ecology, 422–423: 20–28. doi:10.1016/j.jembe.2012.04.007

McQuaid, C.D., & Branch, G.M. 1984. Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of fauna1 and floral biomass. Mar. Ecol, hog. Ser. 19: 145-151.

Gooding, R.A., Harley, C.D.G., & Tang, E. 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. PNAS, 106(23): 9316 –9321. www.pnas.org_cgi_doi_10.1073_pnas.0811143106.

Deja, K., Węsławski, J.M., Borszcz, T., Włodarska-Kowalczuk, M., Kukliński, P., Bałazy, P., & Kwiatkowska, P. 2016. Recent distribution of Echinodermata species in Spitsbergen coastal waters. Pol. Polar Res. 37 (4): 511–526. doi: 10.1515/popore-2016-0027.

Bollard, S., Pinault, M., Quod, J.P., Boissin, E., Hemery, L., & Conand, C. 2013. Biodiversity of echinoderms on underwater lava flows with different ages, from the Piton de La Fournaise (Reunion Island, Indian Ocean). Cah. Biol. Mar. 54: 491-497.

Tuapattinaja, M.A., Pattikawa, J.A., & Natan, Y. 2014. Community structure of Echinoderms at Tanjung Tiram, inner Ambon bay, Indonesia. AACL Bioflux, 7(5): 351-356.

Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., Muller, C., Obermaier, E., Prati, D., Socher, S.A., Sonnemann, I., Waschke, N., Wubet, T., Wurst, S., & Rillig, M.C. 2014. Choosing and using diversity indices: insight for ecological applications from the German Biodiversity Exploratories. Ecol Evol, 4: 3514-3524.

Heip, C.H.R., Herman, P.M.J., & Soetaert, K. 1998. Indices of diversity and evenness. Oceanis, 24(4): 61-87.

Aslam, M. 2009. Diversity, species richness and evenness of moth fauna of Peshawar. Pak. Entomol. 31(2): 99-102.

Byrne, B., Ho, M., Selvakumaraswamy, P., Nguyen, H.D., Dworjanyn, S.A., & Davis, A.R. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc. R. Soc. B. 276: 1883–1888. doi:10.1098/rspb.2008.1935.

Zhang, L., Zhang, L., Shi, D., Wei, J., Chang, Y., & Zhao, C. 2017. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 5:e3122; DOI 10.7717/peerj.312.

Freire, C.A., Santos, I.A., & Vidolin, D. 2008. Osmolality and ions of the perivisceral coelomic fluid of the intertidal sea urchin Echinometra lucunter (Echinodermata: Echinoidea) upon salinity and ionic challenges. Zoologia 28(4): 479–487. doi: 10.1590/S1984-46702011000400009.

Garcon, D.P., Lucena, M.N., & Pinto, M.R. 2013. Synergistic stimulation by potassium and ammonium of K(+)-phosphatase activity in gill microsomes from the crab Callinectes ornatus acclimated to low salinity: novel property of a primordial pump. Arch Biochem Biophys, 530: 55–63.

Geng, C., Tian, Y., Shang, Y., Wang, L., Jiang, Y., & Chang, Y. 2016. Effect of acute salinity stress on ion homeostasis, Na+/K+ ATPase and histological structure in sea cucumber Apostichopus japonicas. SpringerPlus, 5:1977. Doi: 10.1186/s40064-016-3620-4.

Pörtner, H.O., & Farrell, A.P. 2008. Ecology. physiology and climate change. Science, 322: 690-692.

Melzner, F., Gutowska, M.A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M.C., Bleich, M., & Pörtner, H.O. 2009. Physiological basis of high CO2 tolerance in marine ecthothermic animals: pre-adaptation through lifestyle and ontogeny. Biogeosciences, 6: 2313-2331.

Dubois, F. 2014. The Skeleton of Postmetamorphic Echinoderms in aChanging World. Biol. Bull. 226: 223–236.

Moulin, L., Catarino, A.I., Claessens, Th., & Dubois, F. 2011. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin, 62: 48–54.

Vaquer-Sunyer, R., & Duarte, C.M. 2008. Thresholds of hypoxia for marine biodiversity. PNAS, 105(40): 15452–15457. doi_10.1073_pnas.0803833105.

Rabalais, N.N., Turner, R.E., & Wiseman, Jr.W.J. 2002. Gulf of Mexico Hypoxia, a.k.a. “The Dead Zone”. Annu. Rev. Ecol. Syst. 33: 235–63 doi: 10.1146/annurev.ecolsys.33.010802.150513.

Service, R. 2004. New dead zone off Oregon Coast hints at sea change in currents. Science, 305: 1099.




DOI: http://dx.doi.org/10.22135/sje.2017.2.3.81-87

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Sriwijaya Journal of Environment