Spatiotemporal Dynamic of Ostreococcus lucimarinus in IMTA System at Enclosed Sea (Hangzhou Bay) East China Sea Using Environmental DNA (eDNA)

Dyah Muji Rahayu, Peimin He, Kejun Li, Jinlin Liu, Sarwo Edy Wibowo, Ester Restiana Endang Gelis, Bs Monica Arfiana

Abstract


Integrated Multi-Trophic Aquaculture (IMTA) is growing fast in China, in order for cultivation with this system to continue. Through eDNA approach in able to detect Ostreococcus lucimarinus which include picoeukaryotic in IMTA system at enclosed sea (Hangzhou Bay). Information about this species and their ecological placement in the IMTA system is still very limited. eDNA is an ecological approach that can detect supply down to the species level in monitoring aquatic ecology in the IMTA system. The purpose of this study was to determine the taxonomy and guarantees of Ostreococcus lucimarinus and the role of this species in the IMTA system descriptively. Through high throughput sequencing, the taxonomic results of Ostreococcus lucimarinus and confinement of this picoekaryotic species were highest in winter with a total of 599,632 ind. Based on the sampling location, the highest abundance were in aquaculture areas of 337,165 ind. The approach using eDNA has proven to be capable of detecting up to the species level as well as spatiotemporal abundance dynamics of Ostreococcus lucimarinus.


Keywords


Abundance, eDNA, IMTA, Ostreococcus lucimarinus, Taxonomy

Full Text:

FULL TEXT PDF

References


Qi, Z., Shi, R., Yu, Z., Han, T., Li, C., Xu, S., Xu, S., Liang, Q., Yu, W., Lin, H., Huang, H. Nutrient Release From Fish Cage Aquaculture And Mitigation Strategies In Daya Bay, Southern China. Marine Pollution Bulletin, Vol. 146, 2019, pp 399-407.https://doi.org/10.1016/j.marpolbul.2019.06.079

Wang, Q., Li, Z., Gui, J.F., Liu, J., Ya, S., Yuan, J. De Silva, S.S. Paradigm Changes In Freshwater Aquaculture Practices In China: Moving Towards Achieving Environmental Integrity And Sustainability. Ambio, Vol. 47, 2018, pp 410–426. https://doi.org/10.1007/s13280-017-0985-8.

Zhou, X., Zhao, X., Zhang, S., Lin, J. Marine Ranching Construction and Management in East China Sea: Programs for Sustainable Fishery and Aquaculture. Water, Vol. 11, No. 6, 2019, pp 1237. https://doi.org/10.3390/w11061237.

Buck, B.H., Troel, M.F., Krause, G., Angel, D.L., Grote, B., Chopin, T. State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, Vol. 5, No. 165, 2018. https://doi.org/10.3389/fmars.2018.00165.

Khanjani, M.H., Zahedi, S., Mohammadi, A. Integrated Multitrophic Aquaculture (IMTA) As An Environmentally Friendly System For Sustainable Aquaculture: Functionality, Species, And Application Of Biofloc Technology (BFT). Environmental Science and Pollution Research, Vol. 29, No. 45, 2022, pp 67513-67531. https://doi.org/10.1007/s11356-022-22371-8.

Kleitou, P., Kletou, D., David, J. Is Europe Ready For Integrated Multi-Trophic Aquaculture? A Survey On The Perspectives Of European Farmers And Scientists With IMTA Experience. Aquaculture, Vol. 490, 2018, pp 136-148. https://doi.org/10.1016/j.aquaculture.2018.02.035.

Ying, C., Chang, M. J., Hu, C. H., Chang, Y. T., Chao, W. L., Yeh, S. L., Chang, S. J., Hsu, J. T. (2018). The Effects Of Marine Farm-Scale Sequentially Integrated Multi-Trophic Aquaculture Systems On Microbial Community Composition, Prevalence Of Sulfonamide Resistant Bacteria And Sulfonamide Resistance Gene Sul1. Science of the Total Environment, 643, 2018, pp 681–691. https://doi.org/10.1016/j.scitotenv.2018.06.204.

Gold, Z., Sprague, J., Kushner, D.J., Marin, E.Z., Barber, P.H. eDNA Metabarcoding as a Biomonitoring Tool For Marine Protected Areas. PLoS ONE, Vol. 16, No. 2, 2021, pp e0238557. https://doi.org/10.1371/journal.pone.0238557.

Hinz, S., Coston-Guarini, J.. Marnane, M., Guarini, J.M. Evaluating eDNA for Use within Marine Environmental Impact Assessments. Journal of Marine Science and Engineering, Vol. 10, No. 3, 2022, pp 375. https://doi.org/10.3390/jmse10030375.

Jensen, M.R., Sigsgaard, E.E., Ávila, M.P., Agersnap, S., Brenner-Larsen, W., Sengupta, M.E., Xing, Y., Krag, M.A., Knudsen, S.W., Carl, H., Møller, P.R., Thomsen, P.F. Short-term Temporal Variation Of Coastal Marine eDNA. Environmental DNA, Vol. 4, No. 4, 2022, pp 747-762. https://doi.org/10.1002/edn3.285.

Jumah, Y. U. A Review On Waste Absorption Efficiency Of Different Extractive Integrated Multi-Trophic Aquaculture (IMTA) Species: Implications In Coastal And Offshore Aquaculture Waste Management. GSC Biological Pharmaceutical Sciences, Vol. 11, No. 2, 2020, pp 257–264. https://doi.org/10.30574/gscbps.2020.11.2.0141.

Cristescu, M.E., Hebert, P.D.N. Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. Annual Review of Ecology, Evolution, and Systematics, Vol. 49, 2018, pp 209-230. https://doi.org/10.1146/annurev-ecolsys-110617-062306.

Liu, Q., Zhang, Y., Wu, H., Liu, F., Peng, W., Zhang, X., Chang, F., Xie, P., Zhang, H. A Review and Perspective of eDNA Application to Eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms, Vol. 8, No. 3, 2020, pp 417. https://doi.org/10.3390/microorganisms8030417.

Rahayu, D.M., He, Peimin. Analysis of Species Diversity using eDNA Technology in Different IMTA System at Enclosed Sea (Hangzhou Bay) and Island Reef Area East China Sea. Disertation Thesis [Unpublished], 2021.

Gao, K., Beardall, J. Using Macroalgae to Address UN Sustainable Development Goals Through CO2 Remediation And Improvement Of The Aquaculture Environment. Applied Phycology, Vol. 3, No. 1, 2022, pp 360-367. https://doi.org/10.1080/26388081.2022.2025617.

Rey, F., Cartaxana, P., Melo, T., Calado, R., Pereira, R., Abreu, H., Domingues, P., Cruz, Sónia, M., Domingues, R. Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed. Marine Drugs, Vol. 18, No. 4, 2020, pp 188; https://doi.org/10.3390/md18040188.

Park, B. S., Li, Z. Taxonomy and Ecology of Marine Algae. Journal of Marine Science and Engineering, Vol. 10, No. ), 2022, pp 105. https://doi.org/10.3390/jmse10010105.

Blanc-Mathieu, R., Krasovec, M., Hebrard, M., Yau, S., Desgranges, E., Martin, J., Schackwitz, W., Kuo, A., Salin, G., Donnadieu, C., Desdevises, Y., Sanchez-Ferandin, S., Moreau, H., Rivals, E., Grigoriev, I. V., Grimsley, N., Eyre-Walker, A., Piganeau, G. Population Genomics Of Picophytoplankton Unveils Novel Chromosome Hypervariability. Science Advances, Vol. 3, No. 7, 2017, pp 1-10. https://doi.org/ 10.1126/sciadv.1700239.

Leconte, J., Benites, L.S., Vannier, T., Wincker, P., Piganeau, G., Jaillon, O. Genome Resolved Biogeography of Mamiellales. Genes, Vol. 11, No. 1, 2020, pp 66. https://doi.org/10.3390/genes11010066.

Limardo, A.J., Sudek, S., Choi, C.J., Poirier, C., Rii, Y.M., Blum, M., Roth, R., Goodenough, U., Church, M.J., Worden, A.Z. Quantitative Biogeography of Picoprasinophytes Establishes Ecotype Distributions And Significant Contributions to Marine Phytoplankton. Environmental Microbiology, Vol. 19, No. 8, 2017, pp 3219-3234. https://doi.org/10.1111/1462-2920.13812.

Benites, L.F., Poulton, N., Labadie, K., Sieracki, M.E., Grimsley, N., Piganeau, G. Single Cell Ecogenomics Reveals Mating Types Of Individual Cells And Ssdna Viral Infections In The Smallest Photosynthetic Eukaryotes. Philosophical Transactions of The Royal Society B, Vol. 374, No. 1786, 2019, pp 1-12. https://doi.org/10.1098/rstb.2019.0089.

Sofen, L.E., Antipova, O.A., Ellwood, M.J., Gilbert, N.E., LeCleir, G.R., Lohan, M.C., Mahaffey, C., Mann, E.L., Ohnemus, D.C., Wilhelm, S.W., Twining, B.S. Trace Metal Contents Of Autotrophic Flagellates From Contrasting Open-Ocean Ecosystems. Limnology and Oceanography Letters, Vol. 7, No. 4, 2022, pp 354-362. https://doi.org/10.1002/lol2.10258.

Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M.A., Spear, S. F., McKee, A., Oyler-McCance, S. J., Cornman, R. S., Laramie, M. B., Mahon, A. R., Lance, R. F., Pilliod, D. S., Strickler, K. M., Waits, L. P., Fremier, A. K., Takahara, T., Herder, J. E., Taberlet, P. Critical Considerations For The Application Of Environmental DNA Methods To Detect Aquatic Species. Methods in Ecology and Evolution, Vol. 7, No. 1, 2016, pp 1299–1307. https://doi.org/10.1111/2041-210X.12595.

Laramie, M. B., Pilliod, D. S., Goldberg, C. S. Characterizing The Distribution Of An Endangered Salmonid Using Environmental DNA Analysis. Biological Conservation, Vol. 183, 2015, pp 29–37. https://doi.org/10.1016/j.biocon.2014.11.025.

Tragin, M., Vaulot, D. Novel diversity within marine Mamiellophyceae (Chlorophyta) Unveiled by Metabarcoding. Scientific Reports, Vol. 9, No. 5190, 2019, pp 1-14. https://doi.org/10.1038/s41598-019-41680-6.

Neto, A.I. Contribution To The Taxonomy And Ecology of The Azorean Benthic Marine Algae. Biological Journal of the Linnean Society, Vol. 46, No. 1-2, 1992, pp 163–176. https://doi.org/10.1111/j.1095-8312.1992.tb00858.x.

Castillo, Y.M., Forn, I., Yau, S., Morán, X.A.G., Alonso-Sáez, L., Arandia-Gorostidi, N., Vaqué, D., Sebastián, M. Seasonal Dynamics Of Natural Ostreococcus Viral Infection At The Single Cell Level Using VirusFISH. Environmental Microbiology, Vol. 23, No. 6, 2021, pp 3009-3019. https://doi.org/10.1111/1462-2920.15504.

Botebol, H., Lelandais, G., Six, C., Lesuisse, E., Meng, A., Bittner, L., Lecrom, S., Sutak, R., Lozano, J.C., Schatt, P., Vergé, V., Blain, S., Bouget, F.Y. Acclimation Of A Low Iron Adapted Ostreococcus Strain To Iron Limitation Through Cell Biomass Lowering. Scientific Reports, 7: 327, 2017, pp. http://10.1038/s41598-017-00216-6.

Kim, Y. S., Jang, C. J., Yeh, S.W. Recent Surface Cooling In The Yellow And East China Seas And The Associated North Pacific Climate Regime Shift. Continental Shelf Research, Vol. 156, 2018, pp 43-54. https://doi.org/10.1016/j.csr.2018.01.009.

Yu, J., Gan, B., Jing, Z., Wu, L. Winter Extreme Mixed Layer Depth South of the Kuroshio Extension. Journal of Climate, Vol. 33, No. 24, 2020, pp 10419–10436. https://doi.org/10.1175/JCLI-D-20-0119.1.

Chinni, V., Singh, S. K.. Dissolved Iron Cycling In The Arabian Sea And Sub-Tropical Gyre Region Of The Indian Ocean. Geochimica et Cosmochimica Acta,Vol. 317, No. 15, 2022, pp 325-348. https://doi.org/10.1016/j.gca.2021.10.026.

Hutchins, D.A., Boyd, P.W. Marine Phytoplankton And The Changing Ocean Iron Cycle. Nature Climate Change, Vol. 6, 2016, pp 1072–1079. https://doi.org/10.1038/nclimate3147.

Nickelsen, L., Keller, D.P., Oschlies, A.. A Dynamic Marine Iron Cycle Module Coupled To The University Of Victoria Earth System Model: The Kiel Marine Biogeochemical Model 2 For Uvic 2.9. Geoscientific Model Development, Vol. 8, 2015, pp 1357–1381.https://doi.org/10.5194/gmd-8-1357-2015.

Ratnarajah, L., Nicol, S., Bowie, A.R. Pelagic Iron Recycling in the Southern Ocean: Exploring the Contribution of Marine Animals. Frontiers Marine Science, Vol. 5, 2018, pp 1-9. https://doi.org/10.3389/fmars.2018.00109.

Tang, D., Ma, J., Shi, X., Lechte, M., Zhou, X. The Formation Of Marine Red Beds And Iron Cycling on the Mesoproterozoic North China Platform. American Mineralogist, Vol. 105, No. 9, 2020, pp 1412–1423. https://doi.org/10.2138/am-2020-7406.

Whitby, H., Planquette, H., Cassar, N., Bucciarelli, E., Osburn, C.L., Janssen, D.J., Cullen, J.T., González, A.G., Völker, C., Sarthou, G. A Call For Refning The Role Of Humiclike Substances In The Oceanic Iron Cycle. Scientific Reports, Vol. 10, No. 1644, 2020. | https://doi.org/10.1038/s41598-020-62266-7.

Böning, P., Schnetger, B., Belz, L., Ferdelman, T., Brumsack, H.J., Pahnke, K. Sedimentary Iron Cycling In The Benguela Upwelling System Off Namibia. Earth and Planetary Science Letters, Vol. 538, 2020, pp 116212. https://doi.org/10.1016/j.epsl.2020.116212.

Ellwood, M.J., Strzepek, R.F., Strutton, P.G., Trull, T.W., Fourquez, M., Boyd, P.W. Distinct Iron Cycling In A Southern Ocean Eddy. Nature Communications, Vol. 11, No. 825, 2020, pp 1-8. https://doi.org/10.1038/s41467-020-14464-0.

Hassler, Christel A.E, Damien, Cabanes A., Sonia Blanco-Ameijeiras A., Sylvia G., Sander B.D., Benner, Ronald. Importance Of Refractory Ligands And Their Photodegradation For Iron Oceanic Inventories And Cycling. Marine and Freshwater Research, Vol. 71, No. 3, 2020, pp 311-320. https://doi.org/10.1071/MF19213.

Achterberg, E.P., Steigenberger, S., Marsay, C. M., LeMoigne, F.A.C., Painter, S.C., Baker, A.R., Connelly, D.P., Moore, C.M., Tagliabue, A., Tanhua, T. Iron Biogeochemistry in the High Latitude North Atlantic Ocean. Scientific Reports, Vol. 8, No. 1283, 2018, pp 1-15. http://doi.org/10.1038/s41598-018-19472-1.

Kanna, N., Sibano, Y., Toyota, T., Nishioka, J. Winter Iron Supply Processes Fueling Spring Phytoplankton Growth In A Sub-Polar Marginal Sea, The Sea Of Okhotsk: Importance Of Sea Ice And The East Sakhalin Current. Marine Chemistry, Vol. 206, 2018, pp 109-120. https://doi.org/10.1016/j.marchem.2018.08.006.




DOI: http://dx.doi.org/10.22135/sje.2023.8.2.64-69

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sriwijaya Journal of Environment

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.