Imputing Rainfall Data for Flood Simulation in Citarum River, West Java

Muhammad Yoga Pratama, Stevanus Nalendra Jati, Muhammad Rendana

Abstract


The central role of the Citarum River as a buffer to meet the needs of agricultural irrigation, industrial activities, and raw water in the six surrounding districts, including 80% of the population of Jakarta, has experienced a decline in conditions from up-downstream. That way, a lot of data is available regarding the adaptation of floods, drought, and other water source functions for an integrated concept for Citarum. The focus of the study is in the Central Citarum Zone by using 5 and 10 years of rainfall intensity (time series), actualizing the runoff coefficient, Intensity Duration Frequency (IDF) modeling to the formulation of the peak runoff discharge. This achievement is realized by applying Gumbel's Method and Mononobe's Equation and optimizing the 2D HEC-RAS software. Experimental data from 2010 to 2019 indicated that November was the highest rainfall of 448.07 mm/hour, while the lowest was in July with a value of 52.50 mm/hour. The simulation results show an increase in flow rate up to 11%, which means it affects the river's capacity to accommodate the overflow load. Furthermore, this simulation is equipped with a map of the flood-affected areas with a peak discharge scenario in November.

Keywords


Citarum River; rainfall; runoff coefficient; discharge; flood

Full Text:

FULL TEXT PDF

References


D. Harlan, I. K. Hadihardaja, A. A. Kuntoro, Enung, and D. Faturachman, “Derivation of the critical rainfall level needed for an early flood warning in the Upper Citarum river basin Indonesia,” Int. J. GEOMATE, vol. 14, no. 43, pp. 167–174, 2018, doi: 10.21660/2018.43.50926.

A. B. Safarina, N. D. Lestari, and D. Aprilianingsih, “Rainfall Threshold of Citarum River Flood for Early Warning on Urban Area Rainfall Threshold of Citarum River Flood for Early Warning on Urban Area,” 2021, doi: 10.1088/1755-1315/728/1/012001.

A. Fortunato, E. Oliveri, and M. R. Mazzola, “Selection of the optimal design rainfall return period of urban drainage systems,” Procedia Eng., vol. 89, pp. 742–749, 2014, doi: 10.1016/j.proeng.2014.11.502.

N. Bezak, M. Šraj, S. Rusjan, and M. Mikoš, “Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results,” Geosci., vol. 8, no. 2, 2018, doi: 10.3390/geosciences8020069.

B. Bogatinoska and O. U. Nederland, “Hydrological and Hydraulic Analysis of River Crossings,” no. February, 2019.

A. Faqih, “A Statistical Bias Correction Tool for Generating Climate Change Scenarios in Indonesia based on CMIP5 Datasets,” IOP Conf. Ser. Earth Environ. Sci., vol. 58, p. 12051, 2017, doi: 10.1088/1755-1315/58/1/012051.

M. Jarraud and A. Steiner, Climate Change Synthesis Report, Intergover., vol. 9781107025. 2014.

T. Blume, E. Zehe, and A. Bronstert, “Rainfall-runoff response, event-based runoff coefficients and hydrograph separation,” Hydrol. Sci. J., vol. 52, no. 5, pp. 843–862, 2007, doi: 10.1623/hysj.52.5.843.

R. Ley, M. Casper, and R. Merz, “Characterisation of watersheds by runoff coefficients,” vol. 12, no. May, p. 3966, 2010.

F. Lallam, A. Megnounif, and A. N. Ghenim, “Estimating the runoff coefficient using the analytic hierarchy process,” J. Water L. Dev., vol. 38, no. 1, pp. 67–74, 2018, doi: 10.2478/jwld-2018-0043.

M. H. Z. Nurrachman, I. Sumardi, and T. Lastini, “Land Cover and Groundwater Recharge Changes Study Using Conservation Index in the Highland Ciburial Village, Bandung Regency,” IOP Conf. Ser. Earth Environ. Sci., vol. 166, no. 1, 2018, doi: 10.1088/1755-1315/166/1/012036.

I. A. Popescu-Busan, G. I. Lazar, A. T. Constantin, and S. V. Nicoara, “Hydraulic Computer Analysis of a River Sector under Altered Flowing Regime Due to an Existing Bridge and Suggested Specific Correction Works,” IOP Conf. Ser. Earth Environ. Sci., vol. 362, no. 1, 2019, doi: 10.1088/1755-1315/362/1/012148.

M. Sherif, S. Akram, and A. Shetty, “Rainfall Analysis for the Northern Wadis of United Arab Emirates: A Case Study,” J. Hydrol. Eng., vol. 14, no. 6, pp. 535–544, 2009, doi: 10.1061/(asce)he.1943-5584.0000015.

D. RAES, “Frequency analysis of rainfall data,” Coll. Soil Phys. 30th Anniv. (1983 - 2013), p. 42, 2013, [Online]. Available: http://indico.ictp.it/event/a12165/session/21/contribution/16/material/0/0.pdf.

S. Liang and R. Greene, “A high-resolution global runoff estimate based on GIS and an empirical runoff coefficient,” Hydrol. Res., vol. 51, no. 6, pp. 1238–1260, 2020, doi: 10.2166/nh.2020.132.

M. J. Kundwa, “Development of Rainfall Intensity Duration Frequency (IDF) Curves for Hydraulic Design Aspect,” J. Ecol. Nat. Resour., vol. 3, no. 2, pp. 0–14, 2019, doi: 10.23880/jenr-16000162.

S. Burak, A. Bilge, and D. Ulker, “Computation of monthly runoff coefficients for Istanbul,” Therm. Sci., vol. 25, no. 2 Part B, pp. 1561–1572, 2021, doi: 10.2298/tsci191102147b.

N. S. Al-Amri and A. M. Subyani, “Generation of Rainfall Intensity Duration Frequency (IDF) Curves for Ungauged Sites in Arid Region,” Earth Syst. Environ., vol. 1, no. 1, 2017, doi: 10.1007/s41748-017-0008-8.

H. Baghel, H. K. Mittal, P. K. Singh, K. K. Yadav, and S. Jain, “Frequency Analysis of Rainfall Data Using Probability Distribution Models,” Int. J. Curr. Microbiol. Appl. Sci., vol. 8, no. 06, pp. 1390–1396, 2019, doi: 10.20546/ijcmas.2019.806.168.

T. B. Le, A. Khosronejad, F. Sotiropoulos, N. Bartelt, S. Woldeamlak, and P. Dewall, “Large-eddy simulation of the Mississippi River under base-flow condition: hydrodynamics of a natural diffluence-confluence region,” J. Hydraul. Res., vol. 57, no. 6, pp. 836–851, 2019, doi: 10.1080/00221686.2018.1534282.

G. Khosravi, A. Majidi, and A. Nohegar, “Determination of Suitable Probability Distribution for Annual Mean and Peak Discharges Estimation (Case Study: Minab River- Barantin Gage, Iran),” Int. J. Probab. Stat., vol. 1, no. 5, pp. 160–163, 2013, doi: 10.5923/j.ijps.20120105.03.

M. Agbazo, G. Koton’Gobi, B. Kounouhewa, E. Alamou, and A. Afouda, “Estimación de las curvas IDF de extrema precipitación por escala simple en el Valle Oueme, al Norte de la República de Benín (Africa occidental),” Earth Sci. Res. J., vol. 20, no. 1, pp. D1–D7, 2016, doi: 10.15446/esrj.v20n1.49405.

E. A. H. El-sayed, N. Water, F. Prediction, D. Hydrologic, and M. Techniques, “Development of Empirical Formula to Estimate Short Duration Rainfall NILE WATER SCIENCE & ENGINEERING Volume Ten Issue 1,” no. August, 2020.

T. T. Duong, D. M. Do, and K. Yasuhara, “Assessing the effects of rainfall intensity and hydraulic conductivity on riverbank stability,” Water (Switzerland), vol. 11, no. 4, pp. 10–20, 2019, doi: 10.3390/w11040741.

G. Cristian, R. Beilicci, and E. Beilicci, “Advance Hydraulic Modelling of Maciovita River, Caras Severin County, Romania,” IOP Conf. Ser. Mater. Sci. Eng., vol. 471, no. 4, pp. 0–6, 2019, doi: 10.1088/1757-899X/471/4/042001.

A. Moraru, K. R. Usman, O. Bruland, and K. Alfredsen, “River idealization for identification of critical locations in steep rivers using 2D hydrodynamic modelling and GIS,” 22nd North. Res. Basins Work. Symp., no. August, pp. 145–154, 2019, doi: 10.13140/RG.2.2.13276.64647.

J. Ahn, W. Cho, T. Kim, H. Shin, and J. H. Heo, “Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin,” Water (Switzerland), vol. 6, no. 12, pp. 3841–3863, 2014, doi: 10.3390/w6123841.

A. Bomers, R. M. J. Schielen, and S. J. M. H. Hulscher, “The influence of grid shape and grid size on hydraulic river modelling performance,” Environ. Fluid Mech., vol. 19, no. 5, pp. 1273–1294, 2019, doi: 10.1007/s10652-019-09670-4.

M. I. Yuce, M. Esit, and M. C. Karatas, “Hydraulic geometry analysis of Ceyhan River, Turkey,” SN Appl. Sci., vol. 1, no. 7, 2019, doi: 10.1007/s42452-019-0800-1.

R. Vesipa, C. Camporeale, and L. Ridolfi, “Hydraulics of braided river dynamics. Insights from flume experiments,” E3S Web Conf., vol. 40, pp. 1–8, 2018, doi: 10.1051/e3sconf/20184002020.

M. K. Bhuyan, “Geo-Hydraulic Performance Evaluation of River Embankments in Geo-Hydraulic Performance Evaluation of River Embankments in Coastal Odisha,” no. March, 2019.




DOI: http://dx.doi.org/10.22135/sje.2023.8.1.12-20

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sriwijaya Journal of Environment

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.