Analysing secondary infections of Coronavirus Disease 2019 across the Geopolitical zones of Nigeria using estimated time dependent reproduction number

Muhammed Umar Bibi, Saad Ahmed Aliyu, Idris M Jega

Abstract


Time dependent reproduction number (TD – R0) is a measure of secondary infections or transmissibility of a disease useful in monitoring changes in the rate of infection and assessing policies put in place to control the spread of a disease. In this study we used daily infections situation report of COVID – 19 published by the Nigeria Centre for Disease Control (NCDC) to estimate Nigeria’s TD – R0 and then repeated the same for the six geo – political zones in the country. Estimates of TD – R0 values for the country from the 23rd of March – 27th of May 2020 fluctuated with a maximum of 2.3 (95% CrI) on the 19th of April and a minimum of 0.83 (95% CrI) on the 16th May 2020. Despite the decline in TD – R0 since the early stages of the outbreak of COVID – 19 in Nigeria suggesting a fall in the expected rate of secondary infection apart from the northwest and the northeast geo – political zones values remain above 1.0 for other zones and the country, generally. The Kolmogorov – Smirnov (KS) test was used to test the null hypothesis stating that the means of TD – R0 across the geo-political zones does not follow the same distribution pattern. After making adjustments for Type 1 – error we accepted the null hypothesis (p < 0.05) for six pairs of geo-political zones. We conclude that our findings are significant in studying the COVID – 19 epidemic in Nigeria and important in evaluating the strategies deployed by governments at the national and regional levels, thus, the same method can be replicated across Africa.

Keywords


COVID – 19; pandemic; time dependent reproduction number; Nigeria; Geo-political zones

Full Text:

FULL TEXT PDF

References


Adhikari, S.P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.; Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty 2020, 9, 29, doi:10.1186/s40249-020-00646-x.

Abbas, A.M.; Fathy, S.K.; Fawzy, A.T.; Salem, A.S.; Shawky, M.S. The mutual effects of COVID-19 and obesity. Obes. Med. 2020, 19, 100250, doi:10.1016/j.obmed.2020.100250.

Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet 2020, 395, 931–934, doi:10.1016/S0140-6736(20)30567-5.

NCDC COVID-19 OUTBREAK IN NIGERIA: Situation Report; National Centre for Disease Control: Abuja, Nigeria, 2020; p. 2;.

Mustapha, J.O.; Adedokun, K.A.; Abdullahi, I.N. Public health preparedness towards COVID-19 outbreak in Nigeria. Asian Pac. J. Trop. Med. 2020, doi:10.4103/1995-7645.279650.

Arruda, A.G.; Alkhamis, M.A.; VanderWaal, K.; Morrison, R.B.; Perez, A.M. Estimation of Time-Dependent Reproduction Numbers for Porcine Reproductive and Respiratory Syndrome across Different Regions and Production Systems of the US. Front. Vet. Sci. 2017, 4, 46, doi:10.3389/fvets.2017.00046.

Thompson, R.N.; Stockwin, J.E.; van Gaalen, R.D.; Polonsky, J.A.; Kamvar, Z.N.; Demarsh, P.A.; Dahlqwist, E.; Li, S.; Miguel, E.; Jombart, T.; et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019, 29, 100356, doi:10.1016/j.epidem.2019.100356.

Musa, S.; Zhao, S.; Wang, M.; Habib, A.; Mustapha, U.; He, D. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa; 2020;

Adegboye, A.O.; Adekunle, I.A.; Gayawan, E. Early Transmission Dynamics of Novel Coronavirus (COVID-19) in Nigeria. Int. J. Environ. Res. Public. Health 2020, 17, doi:10.3390/ijerph17093054.

Adekunle, A.I.; Adegboye, O.; Gayawan, E.; McBryde, E. Is Nigeria really on top of COVID-19? Message from effective reproduction number. medRxiv 2020, 2020.05.16.20104471, doi:10.1101/2020.05.16.20104471.

United Nations, Department of Economic and Social Affairs, Population Division World Population Prospects 2019, Online Edition. Rev. 1.; 2019;

Campbell, F.; Strang, C.; Ferguson, N.; Cori, A.; Jombart, T. When are pathogen genome sequences informative of transmission events? PLOS Pathog. 2018, 14, e1006885, doi:10.1371/journal.ppat.1006885.

Hu, F.-C. The Estimated Time-Varying Reproduction Numbers during the Ongoing Pandemic of the Coronavirus Disease 2019 (COVID-19) in 12 Selected Countries outside China. medRxiv 2020, 2020.05.10.20097154, doi:10.1101/2020.05.10.20097154.

Villabona-Arenas, C.J.; de Oliveira, J.L.; de Sousa-Capra, C.; Balarini, K.; Pereira da Fonseca, C.R.T.; Zanotto, P.M. de A. Epidemiological dynamics of an urban Dengue 4 outbreak in São Paulo, Brazil. PeerJ 2016, 4, e1892, doi:10.7717/peerj.1892.

Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020, 93, 284–286, doi:10.1016/j.ijid.2020.02.060.

Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70.

Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–802, doi:10.1093/biomet/75.4.800.

Hommel, G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 1988, 75, 383–386, doi:10.1093/biomet/75.2.383.

Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300.

Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001, 29, 1165–1188, doi:10.1214/aos/1013699998.




DOI: http://dx.doi.org/10.22135/sje.2020.5.2.103-110

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Sriwijaya Journal of Environment