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Abstract: Log ratio is one of the change detection techniques often used in SAR image-based flood inundation
analysis, where the differences in characteristics between its polarizations are expected to complement each other
and provide optimal predictions. This research aimed to identify the characteristics of the output generated from
various potential combinations utilizing log ratio change detection and to evaluate the most reliable combination for
detecting flood inundation. The study utilized Sentinel-1 GRD IW dual polarization mode before and during the flood
event as its main data source. Briefly, the data processing consists of preprocessing, collocation, and change
detection, which were subsequently followed by analysis and evaluation. The analysis results indicated a highly
significant difference in characteristics among the four outputs of log ratio change, where the combinations of LR
and LR> detected much smaller changes compared to the combinations of LR4 and LR3. The LR4 combination acts
as a counterpoint to the LR3 combination, as the changes identified in LR3 showed a tendency towards positive values,
whereas the opposite is true for LR4. The evaluation results show that CLR1 and CLR2 provide more reliable flood
inundation estimation than CLR3 and CLR4, which appear to be visually overestimated. With several post-

classification adjustments, it is feasible to achieve improved estimations of flood inundation.
Keywords: change detection, flood; synthetic aperture radar

1. Introduction

A frequently used data source in flood analysis is
Synthetic Aperture Radar (SAR). In contrast to optical
imagery, SAR has the ability to penetrate cloud cover
and does not rely on sunlight for illumination. This
unique feature makes SAR the most preferred data
source for extensive flood mapping, covering large
regions and diverse land cover types [1].

The process of flood mapping with SAR imagery
can be performed with a single image, taking
advantage of either VV or VH polarization. Each has
its own characteristics, allowing for customization
based on specific needs. For example, VH polarization
is generally used for flood extraction in open areas due
to its sensitivity to smooth water surfaces. On the other
hand, if the area to be mapped is urban, VV
polarization is favored due to its heightened sensitivity
to vertical structures such as buildings or other
infrastructure [2].

Owing to the variations in characteristics, SAR
imagery can be considered a primary asset in the
application of change detection techniques. Change
detection methods are perceived to provide enhanced
comprehension relative to maps produced from a single
image [3]. Its ability to address outliers caused by
temporary water bodies, which lead to significant
changes in SAR backscattering, makes it more
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advantageous for implementation [4].

The log ratio is a widely utilized method for
change detection in SAR-based imagery due to its
compatibility with amplitude or intensity-based
change detection [5]. Fundamentally, the variation of
intensity within multi-temporal SAR images can be
classified into two principal categories: an increase and
a decrease in intensity, and thus, this strategy is
considered to deliver the optimal results as it
successfully captures both dimensions [6]. Some
researchers prefer the use of VV polarization due to its
reduced noise considerations compared to cross-
polarization, and in particular, this preference is more
effective in regions characterized by particular
topographical conditions [7][8][9]. Nevertheless, some
people choose VH polarization because it is regarded
as more appropriate and excellent in distinguishing
water bodies from non-water bodies [10]. Considering
these strengths, a more effective outcome could
potentially be attained by integrating both approaches.
The combination of bands with varying characteristics
will lead to outputs that offer different insights. This
research aims to identify the characteristics of the
results from both VH and VV polarization
combinations in change detection methods, as well as
to evaluate the most reliable combination for detecting
flood inundation.
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Figure 1. Map of research location

2. Materials and Methods

2.1. Data

The primary data utilized in this research consists
of SAR images from Sentinel-1 Ground Range
Detected (GRD) mode Interferometric Wide (IW)
spatial resolution 10 m x 10 m with dual polarization
(VV and VH). The pre-flood data was recorded on
February 9, 2025, while the flood data was obtained on
April 10, 2025. This research is located in the
Peninggalan village, within the Tungkal Jaya District
of Musi Banyuasin Regency (Figure 1). The
administrative boundary vector of the Peninggalan
village at a scale of 1:50000 is applied to define the
research location, while the historical field data is used
to assess the changes identified by the change detection
algorithm.

2.2. Methods
In summary, the procedures involved in this
research consist of data preprocessing, collocation,

change detection, and data analysis (Figure 2).

Preprocessing is performed to reduce distortions and

noise in the SAR images, ensuring that the Sentinel-1

GRD data is sufficiently consistent for further analysis

and processing. It was applied to images before and

during the flood event, considering both cross-
polarization (VH) and co-polarization, which is later
documented as VHi, VVi, VH;, and VVj. This
preprocessing phase is informed by Selmi [5], Filliponi

[11], and Braun [12] as detailed below:

a. Apply Orbit File, updating orbital metadata to
enhance the accuracy of both the position and
velocity of the satellite.

b. Thermal Noise Removal, aimed at reducing the
effects of low-intensity noise and invalid data at the
scene edges as well as between sub-swaths by
normalizing the backscatter values.

c. Calibration. This procedure involves the
transformation of digital pixel values into
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radiometrically calibrated SAR reflectance values.

d. Speckle Filtering. This procedure is conducted to
enhance image quality by reducing speckles.
Speckle refers to the visual representation of
granular noise found in SAR images.

e. Terrain Correction, aimed at rectifying the
geometric distortions that occur using SRTM DEM,
ensuring that the image closely represents the
geometric reality of the real world.

To enable the effective integration of multi-band
usage within Sentinel-1 imagery, collocation is
performed. The subsequent process of change detection
is carried out by utilizing the log ratio algorithm. This
method should be implemented for all possible pairings
of SAR images from before and during the flood event.
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Figure 2. Research flowchart

The change detection output discussed earlier is
analyzed in quantitative descriptive analysis to provide
a comprehensive overview of the data characteristics.
Following the detection of log ratio changes, the
outcomes are categorized into water body and non-
water body classes through the application of the
Expectation Maximization (EM) Cluster Analysis. All
these steps, which include preprocessing, collocation,
change detection, and image classification, were
performed utilizing the Sentinel Application Platform
(SNAP), an open-source tool developed by the
Copernicus European Space Agency (ESA) for
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processing and analyzing earth observation data. The
results are then evaluated against the inundation
sampling points derived from historical field surveys
to determine which combination is the most reliable for
flood inundation analysis. This action is carried out
using the open-source software Quantum GIS (QGIS).

3. Results and Discussion

3.1.  Backscatter
Identification
Object identification in SAR imagery is conducted
by observing their characteristics and backscatter
intensity. High backscatter intensity is usually
associated with vertical objects such as trees and
buildings, whereas low backscatter coefficients are
linked to smooth surfaces or tranquil water. The
calibrated images generated in the preprocessing phase,
labeled as 6° VV1, 6° VHi, 6° VV2, and 6° VH>, have
a relatively uniform color scheme, as shown in Figure
3. The variations are observable in the flood imagery,
where the addition of black hues signifies an increase
in the volume of the water body. Statistically, this
phenomenon is highlighted by the data presented in
Table 1.

Interpretation  and  Flood

Table 1. Statistics of the backscatter coefficient

No. Statistik g°VHi  5°VVi  5°VHy 4°VV2
1 Min 0.0008  0.0095 0.0006 0.0072
2 Max 2.8996 26.2838 3.2202 34.2336
3 Range 2.8987 26.2743 3.2196 34.2265

The decrease in minimum intensity, the increase
in maximum intensity, and the widening range of
values are typical features of flood detection through
SAR, which is caused by two scattering mechanisms
operating simultaneously in different areas within a
single image scene. The specular reflection occurring
in open water areas directs the energy away from the
sensor, which is further amplified by the high dielectric
constant of water, leading to a significantly low
backscatter [13][14]. The increase in maximum
intensity values is thought to be attributed to the
double-bounce backscattering effect, changes in
surface roughness , and the interaction of signals
with buildings or vegetation that are partially inundated
[1][2][4][15]. The extension of the dynamic range is a
rational outcome, considering that both mechanisms
operate simultaneously within a single scene.
Consequently, this leads to greater contrast, more
complex classification, and a more -challenging
thresholding situation [16]. A more distinct
visualization of these changes can be observed in
Figure 4.
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Figure 3. Preprocessed images: (a) VH1, (b) VV1, (¢)
VHa, and (d) VV2.

event: (a) VHi, (b) VHz, (¢) VV1, and (d) VV..
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3.2. Change Detection

The operator of change detection employed in this
study is the log ratio. The log ratio is determined by
normalizing the backscatter coefficients from images
taken before and during a flood, followed by a
logarithmic transformation of the results. As mentioned
before, we will use all possible combinations to
perform the change detection operator, with the
following combination and notation:

LR = log (¢° VHi/ 6° VH>)
LR2=log (c° VV1/ 6° VVy)
LRs=log (c° VVi/ 6° VHa)
LR4=log (c° VH1/ 6° VV2).

An area that has been detected to have changed will
show a ratio value that is either greater than or less than
1. Meanwhile, a log ratio value nearing zero indicates
stability. A positive ratio is indicated by a bright hue in
the image, while a negative ratio is represented by a dark
hue, as illustrated in Figure 5.

Remark c® VV, c® VvV, LR

Pin 1 0.16181 0.01122 2.66605
Pin 2 0.18429 0.22254 -4.32969
Pin 3 0.19641 0.17984 0.08813

Figure 5. The variation of intensity in SAR images
through change detection methods

The differences in the characteristics of VH and
VV polarization, along with the variations in image
acquisition time, are fundamental to the analysis of
change detection. Visually, similar polarization
combinations exhibit nearly identical image textures.
The key difference lies in the fact that the LR in Figure
6a yields darker image hues when compared to the LR>
in Figure 6b, and it is the darkest when contrasted with
the combination of LR3; in Figure 6c and the
combination of LR4 in Figure 5d. In contrast to 1% and
2" combinations, 3™ and 4" combinations illustrate
particular land cover patterns within their image
textures (Figure 6).
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Figure 6. Log ratio images visualization

This log ratio application, by default, has adopted
a lower threshold of -2 and an upper threshold of 2,
which has been applied across all combinations. Thus,
a change is deemed significant within the defined
parameters. As shown in Figures 7 and 8, changes are
visually marked by bright and dark hues in the LR
image.

Figure 7. LR and LRC of LR and LR>

In LRC;, the algorithm considers only 676 cells
that have shown a significant change. Among these,
656 cells have shown positive changes, while 20 cells
have shown negative changes. This is corroborated by
the positive mean and median values (Table 2), which
reflect a positive trend in the changes. In LRC», a total
of 835 cells were identified as having changed,
consisting of 490 cells with positive changes and 245
cells with negative changes. Unlike LRC1, the darker
hues identified as changes are also apparent in the LR
image due to the considerable amount of negative
change values. Some of these are highlighted with red
borders in the image.
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Table 2. Statistics of LRC
Statistics LRC, LRC; LRC; LRC4

Count 676 835 44,620 57,834
Mean 230 0.84 2.23 2.17
Median 235 220 2.12 2.11
Minimum 283 562 2.00 -7.04
Maximum 354 420 5.96 2.15
Change (+) 656 490 44,620 2
Change (-) 20 245 0.00 57,832

Changes in LRC; are characterized by a
predominantly bright appearance in the LR image,
which does not reflect any negative change values,
amounting to 44,620 cells (Figure 6). Due to this
inclination, this combination might be useful for
identifying positive changes. The final combination,
LRC4, detects the highest number of changes compared
to the other combinations, totaling 57,834 cells. In
contrast to LRCs, the detection results of this
combination are largely dominated by negative
changes, with 57,832 cells showing negative values,
while only 2 cells were detected as positive. The
negative trend is further corroborated by the negative
mean and median values. Like LRCs, based on this
trend, LRC4 may be suitable for detecting negative
changes.

Visually, the bright patterns observed in LR across
all image combinations can be interpreted as flood
inundation. However, given the threshold applied, it
appears challenging to ascertain whether the changes
are positive or negative, directly associated with the
flood inundation. In comparison to the single image
during the flood shown in Figure 3, only LRC;
demonstrates a comparable pattern, aligns with the river
flow pattern, and disperses in the surrounding area,
although, on the other hand, it appears to be
overestimated. Therefore, selecting the appropriate.

The threshold is essential for enhancing the
precision of the generated map [17][15]. Moreover, a
technique that satellite imagery-based flood
interpretation  should consider is hydrological
connectivity patterns and types of land cover [2][18]. In
contrast to LRCs, it appears to be a false alarm, as it
does not connect with the hydrological pattern; the
resulting pattern is more linked to the residential zone
(yellow border in Figure 8).
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Figure 8. LR and LRC of LR3 and LR4

3.3. Evaluation

The dynamics of the Earth's surface during a flood
are of great importance to consider, as it will affect the
characteristics of the SAR signal backscatter.
Inundation in urban areas and vegetation results in the
phenomenon of double-bounce scatter, which is caused
by the complex interactions between radar signals,
structures, or trees, and the water itself [2][15].
Furthermore, inundation impacts the changes in surface
roughness, potentially causing extreme specular
reflections that will affect backscatter intensity [19].
Flooding, often accompanied by high rainfall intensity,
can also affect soil moisture levels, and high moisture
levels correspond to a high dielectric constant [20].
This, in turn, influences the variations in backscatter
intensity, considering that SAR is sensitive to these
dielectric characteristics [21].

This study's evaluation involves comparing the
classification results from EM Cluster Analysis with
single images recorded during flooding. Furthermore, a
comparison is carried out among the classification
results based on inundation sample points obtained
from historical data in the field. The results are
presented in the following Figure 9.

According to the image, it is apparent that LR4 and
LRs sequentially generate the most extensive flood
inundation classes, with areas of 501.53 ha and 686.98
ha, respectively (Table 3). A visual assessment reveals
a substantial potential for overestimation, as indicated
by the numerous bright areas interpreted as water
bodies. This phenomenon is suspected to arise from the
double-bounce effect, resulting from either temporary
flooding of vegetated areas or changes in surface
roughness, which distort the backscatter signal [8].

Table 3. The extent of the classified log ratio (CLR)

Class output  Area (Ha) Count (polygon)
CLR, 352.81 1,842
CLR» 229.93 1,341
CLR; 501.53 1,524
CLR4 686.98 2,083
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CLR: (Fig. 9a) and CLR> (Fig. 9b) exhibit
narrower extents of 352.81 ha and 229.93 ha,
respectively. When compared to CLR; (Fig. 9¢) and
CLR4 (Fig. 9d), these classifications show a reduced
presence of noise. The distortions that occur are
predominantly in residential areas along the main
roads, indicating that this combination is seemingly
more responsive to this specific land cover type. The
LR: combination seems to delineate water bodies with
a slightly greater extent than LR». This is likely
attributed to the cross-polarization characteristics,
which tend to include more noise than co-polarized
data [7].

This investigation has also involved the
consolidation of the four classification results, resulting
in a new geometric feature that represents the
overlapping area and inherits attributes from all
intersecting input layers [22]. The output (latter called
CLRI) can be observed in Figure 10. The area derived
from this procedure is the least extensive, while
simultaneously demonstrating the minimal occurrence
of errors in detecting non-water objects.

The classification results were also evaluated with
data from historical field surveys. A total of 111 flood
inundation points have been recorded for subsequent
overlay analysis. The results are displayed in Table 4.

Tabel 4. evaluation of classification results
Result CLR1 CLR2 CLR3 CLR4 CLRI
Confirmed 73 75 102 58 30
Persentage  65.77 67.57 91.89 52.25 27.03

4 >
SRR - iy it G
Class output Area (Ha) Count (polygon)
CLRI 59.08 250

Figure 10. Intersection layer

CLRs has verified the presence of flooding at 102
sites, achieving a detection rate of 91.89% for the test
points. The number of estimated inundations that are
unassociated and distant from the river raises concerns
that the results may represent false alarm change pixels.
This situation is a consequence of the intricate
interactions between SAR signals and certain types of
land cover, including vegetated areas.

A similar pattern is observed in CLR4. The results
of the classification are only aligned with 58 test points,

Figure 9. Evaluation of flood inundation
according to LR (a), LR2 (b), LR3(¢), and LR4
(d)
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and this does not correspond proportionately to the
amount of inundation that has occurred. By integrating
cross and co-polarization through the log ratio operator,
it seems to accentuate the VH band, which is indicative
of water reflection. However, this could result in an
overestimation [23][24]. Moreover, it generates more
flooded pixels than the combinations of the same
polarizations.

CLR: and CLR: demonstrate a commendable
ability to detect inundation, achieving rates of 65.77%
and 67.57%, respectively. The use of the same
polarization combination appears to effectively reduce
speckle noise in SAR images. This may elucidate why
some researchers prefer the combination of LR; and
LRz over the two previous combinations. Nevertheless,
undeniable inaccuracies are still apparent, such as the
erroneous labeling of dwelling attributes as flood
inundation. To enhance reliability, it is essential to
undertake several additional measures, including the
removal of pixels identified as residential, eliminating
permanent water bodies, discarding areas with slopes
exceeding 5%, and excluding areas smaller than 8
pixels [9].

4. Conclussion

Essentially, the log ratio output across all
combinations is capable of displaying a sufficiently
contrasting estimation of flood inundation in
comparison to the surrounding areas. However, LR3
and LRy still exhibit patterns that correspond to specific
land cover types. Changes in LR; and LR:» can
effectively capture both decreases and increases in
intensity, while LR3 only captures increases in
intensity, and the intensity changes in LR4 are
predominantly characterized by decreases in intensity.
CLR: and CLR:z provide more reliable flood inundation
estimation than CLR3; and CLR4, which appear to be
visually overestimated. With several post-classification
adjustments, it is feasible to achieve improved
estimations of flood inundation.
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