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Abstract: Log ratio is one of the change detection techniques often used in SAR image-based flood inundation 

analysis, where the differences in characteristics between its polarizations are expected to complement each other 

and provide optimal predictions. This research aimed to identify the characteristics of the output generated from 

various potential combinations utilizing log ratio change detection and to evaluate the most reliable combination for 

detecting flood inundation. The study utilized Sentinel-1 GRD IW dual polarization mode before and during the flood 

event as its main data source. Briefly, the data processing consists of preprocessing, collocation, and change 

detection, which were subsequently followed by analysis and evaluation. The analysis results indicated a highly 

significant difference in characteristics among the four outputs of log ratio change, where the combinations of LR1 

and LR2 detected much smaller changes compared to the combinations of LR4 and LR3. The LR4 combination acts 

as a counterpoint to the LR3 combination, as the changes identified in LR3 showed a tendency towards positive values, 

whereas the opposite is true for LR4. The evaluation results show that CLR1 and CLR2 provide more reliable flood 

inundation estimation than CLR3 and CLR4, which appear to be visually overestimated. With several post-

classification adjustments, it is feasible to achieve improved estimations of flood inundation. 
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1. Introduction 

A frequently used data source in flood analysis is 

Synthetic Aperture Radar (SAR). In contrast to optical 

imagery, SAR has the ability to penetrate cloud cover 

and does not rely on sunlight for illumination. This 

unique feature makes SAR the most preferred data 

source for extensive flood mapping, covering large 

regions and diverse land cover types [1]. 

The process of flood mapping with SAR imagery 

can be performed with a single image, taking 

advantage of either VV or VH polarization. Each has 

its own characteristics, allowing for customization 

based on specific needs. For example, VH polarization 

is generally used for flood extraction in open areas due 

to its sensitivity to smooth water surfaces. On the other 

hand, if the area to be mapped is urban, VV 

polarization is favored due to its heightened sensitivity 

to vertical structures such as buildings or other 

infrastructure [2]. 

Owing to the variations in characteristics, SAR 

imagery can be considered a primary asset in the 

application of change detection techniques. Change 

detection methods are perceived to provide enhanced 

comprehension relative to maps produced from a single 

image [3]. Its ability to address outliers caused by 

temporary water bodies, which lead to significant 

changes in SAR backscattering, makes it more 

advantageous for implementation [4]. 

The log ratio is a widely utilized method for 

change detection  in SAR-based imagery due to its 

compatibility with  amplitude  or  intensity-based 

change detection [5]. Fundamentally, the variation of 

intensity within multi-temporal SAR images can be 

classified into two principal categories: an increase and 

a decrease in intensity, and thus, this strategy is 

considered to deliver the optimal results as it 

successfully captures both dimensions [6]. Some 

researchers prefer the use of VV polarization due to its 

reduced noise considerations compared to cross-

polarization, and in particular, this preference is more 

effective in regions characterized by particular 

topographical conditions [7][8][9]. Nevertheless, some 

people choose VH polarization because it is regarded 

as more appropriate and excellent in distinguishing 

water bodies from non-water bodies [10]. Considering 

these strengths, a more effective outcome could 

potentially be attained by integrating both approaches.  

The combination of bands with varying characteristics 

will lead to outputs that offer different insights. This 

research aims to identify the characteristics of the 

results from both VH and VV polarization 

combinations in change detection methods, as well as 

to evaluate the most reliable combination for detecting 

flood inundation.  
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Figure 1. Map of research location 

 

2. Materials and Methods 

2.1. Data 

The primary data utilized in this research consists 

of SAR images from Sentinel-1 Ground Range 

Detected (GRD) mode Interferometric Wide (IW) 

spatial resolution 10 m x 10 m with dual polarization 

(VV and VH). The pre-flood data was recorded on 

February 9, 2025, while the flood data was obtained on 

April 10, 2025. This research is located in the 

Peninggalan village, within the Tungkal Jaya District 

of Musi Banyuasin Regency (Figure 1). The 

administrative boundary vector of the Peninggalan 

village at a scale of 1:50000 is applied to define the 

research location, while the historical field data is used 

to assess the changes identified by the change detection 

algorithm. 
 

2.2. Methods 

In summary, the procedures involved in this 

research consist of data preprocessing, collocation, 

change detection, and data analysis (Figure 2). 

Preprocessing is performed to reduce distortions and 

noise in the SAR images, ensuring that the Sentinel-1 

GRD data is sufficiently consistent for further analysis 

and processing. It was applied to images before and 

during the flood event, considering both cross-

polarization (VH) and co-polarization, which is later 

documented as VH1, VV1, VH2, and VV2. This 

preprocessing phase is informed by Selmi [5], Filliponi 

[11], and Braun [12] as detailed below: 

a. Apply Orbit File, updating orbital metadata to 

enhance the accuracy of both the position and 

velocity of the satellite. 

b. Thermal Noise Removal, aimed at reducing the 

effects of low-intensity noise and invalid data at the 

scene edges as well as between sub-swaths by 

normalizing the backscatter values. 

c. Calibration. This procedure involves the 

transformation of digital pixel values into 

radiometrically calibrated SAR reflectance values. 

d. Speckle Filtering. This procedure is conducted to 

enhance image quality by reducing speckles. 

Speckle refers to the visual representation of 

granular noise found in SAR images. 

e. Terrain Correction, aimed at rectifying the 

geometric distortions that occur using SRTM DEM, 

ensuring that the image closely represents the 

geometric reality of the real world. 

To enable the effective integration of multi-band 

usage within Sentinel-1 imagery, collocation is 

performed. The subsequent process of change detection 

is carried out by utilizing the log ratio algorithm. This 

method should be implemented for all possible pairings 

of SAR images from before and during the flood event. 

 

 

 

Figure 2. Research flowchart 

 

The change detection output discussed earlier is 

analyzed in quantitative descriptive analysis to provide 

a comprehensive overview of the data characteristics. 

Following the detection of log ratio changes, the 

outcomes are categorized into water body and non-

water body classes through the application of the 

Expectation Maximization (EM) Cluster Analysis. All 

these steps, which include preprocessing, collocation, 

change detection, and image classification, were 

performed utilizing the Sentinel Application Platform 

(SNAP), an open-source tool developed by the 

Copernicus European Space Agency (ESA) for 
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processing and analyzing earth observation data. The 

results are then evaluated against the inundation 

sampling points derived from historical field surveys 

to determine which combination is the most reliable for 

flood inundation analysis. This action is carried out 

using the open-source software Quantum GIS (QGIS). 

 

3. Results and Discussion 

3.1. Backscatter Interpretation and Flood 

Identification 

Object identification in SAR imagery is conducted 

by observing their characteristics and backscatter 

intensity. High backscatter intensity is usually 

associated with vertical objects such as trees and 

buildings, whereas low backscatter coefficients are 

linked to smooth surfaces or tranquil water. The 

calibrated images generated in the preprocessing phase, 

labeled as σ° VV1, σ° VH1, σ° VV2, and σ° VH2, have 

a relatively uniform color scheme, as shown in Figure 

3. The variations are observable in the flood imagery, 

where the addition of black hues signifies an increase 

in the volume of the water body. Statistically, this 

phenomenon is highlighted by the data presented in 

Table 1.  

Table 1. Statistics of the backscatter coefficient 
No. Statistik σ0VH1 σ0VV1 σ0VH2 σ0VV2 

1 Min 0.0008 0.0095 0.0006 0.0072 

2 Max 2.8996 26.2838 3.2202 34.2336 

3 Range 2.8987 26.2743 3.2196 34.2265 

The decrease in minimum intensity, the increase 

in maximum intensity, and the widening range of 

values are typical features of flood detection through 

SAR, which is caused by two scattering mechanisms 

operating simultaneously in different areas within a 

single image scene. The specular reflection occurring 

in open water areas directs the energy away from the 

sensor, which is further amplified by the high dielectric 

constant of water, leading to a significantly low 

backscatter [13][14]. The increase  in  maximum  

intensity  values  is  thought  to  be  attributed  to the 

double-bounce backscattering  effect,   changes   in   

surface   roughness ,  and  the  interaction  of signals 

with buildings or vegetation that are partially inundated 

[1][2][4][15]. The extension of the dynamic range is a 

rational outcome, considering that both mechanisms 

operate simultaneously within a single scene. 

Consequently, this leads to greater contrast, more 

complex classification, and a more challenging 

thresholding situation [16]. A more distinct 

visualization of these changes can be observed in 

Figure 4. 

 

 

 

Figure 3. Preprocessed images: (a) VH1, (b) VV1, (c) 

VH2, and (d) VV2. 

 

Figure 4. Changes in water bodies during flood 

event: (a) VH1, (b) VH2, (c) VV1, and (d) VV2. 

(b) 

(d) 

(a) 

(b) 

(c) 

(d) 
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3.2. Change Detection 

The operator of change detection employed in this 

study is the log ratio. The log ratio is determined by 

normalizing the backscatter coefficients from images 

taken before and during a flood, followed by a 

logarithmic transformation of the results. As mentioned 

before, we will use all possible combinations to 

perform the change detection operator, with the 

following combination and notation: 

LR1= log (σ° VH1/ σ° VH2) 

LR2= log (σ° VV1/ σ° VV2) 

LR3= log (σ° VV1/ σ° VH2) 

LR4= log (σ° VH1/ σ° VV2). 

An area that has been detected to have changed will 

show a ratio value that is either greater than or less than 

1. Meanwhile, a log ratio value nearing zero indicates 

stability. A positive ratio is indicated by a bright hue in 

the image, while a negative ratio is represented by a dark 

hue, as illustrated in Figure 5. 

 

 

Figure 5. The variation of intensity in SAR images 

through change detection methods 

 

The differences in the characteristics of VH and 

VV polarization, along with the variations in image 

acquisition time, are fundamental to the analysis of 

change detection. Visually, similar polarization 

combinations exhibit nearly identical image textures. 

The key difference lies in the fact that the LR1 in Figure 

6a yields darker image hues when compared to the LR2 

in Figure 6b, and it is the darkest when contrasted with 

the combination of LR3 in Figure 6c and the 

combination of LR4  in Figure 5d. In contrast to 1st and 

2nd combinations, 3rd and 4th combinations illustrate 

particular land cover patterns within their image 

textures (Figure 6). 

 

 

 

Figure 6. Log ratio images visualization 

 

This log ratio application, by default, has adopted 

a lower threshold of -2 and an upper threshold of 2, 

which has been applied across all combinations. Thus, 

a change is deemed significant within the defined 

parameters. As shown in Figures 7 and 8, changes are 

visually marked by bright and dark hues in the LR 

image.  

 

 

 

Figure 7. LR and LRC of LR1 and LR2 

 

In LRC1, the algorithm considers only 676 cells 

that have shown a significant change. Among these, 

656 cells have shown positive changes, while 20 cells 

have shown negative changes. This is corroborated by 

the positive mean and median values (Table 2), which 

reflect a positive trend in the changes. In LRC2, a total 

of 835 cells were identified as having changed, 

consisting of 490 cells with positive changes and 245 

cells with negative changes. Unlike LRC1, the darker 

hues identified as changes are also apparent in the LR 

image due to the considerable amount of negative 

change values. Some of these are highlighted with red 

borders in the image. 

 

 

 

 

 

a. b. 

c. d. 

http://dx.doi.org/10.22135/sje.2025.10.3.135-1


 

           Vol. 10 No.3, 135-142                                                 http://dx.doi.org/10.22135/sje.2025.10.3.135-142    139 

 

Table 2. Statistics of LRC 
Statistics LRC1 LRC2 LRC3 LRC4 

Count 676 835 44,620 57,834 

Mean 2.30 0.84 2.23 -2.17 

Median 2.35 2.20 2.12 -2.11 

Minimum -2.83 -5.62 2.00 -7.04 

Maximum 3.54 4.20 5.96 2.15 

Change (+) 656 490 44,620 2 

Change (-) 20 245 0.00 57,832 

 

Changes in LRC3 are characterized by a 

predominantly bright appearance in the LR image, 

which does not reflect any negative change values, 

amounting to 44,620 cells (Figure 6). Due to this 

inclination, this combination might be useful for 

identifying positive changes. The final combination, 

LRC4,  detects the highest number of changes compared 

to the other combinations, totaling 57,834 cells. In 

contrast to LRC3, the detection results of this 

combination are largely dominated by negative 

changes, with 57,832 cells showing negative values, 

while only 2 cells were detected as positive. The 

negative trend is further corroborated by the negative 

mean and median values. Like LRC3, based on this 

trend, LRC4 may be suitable for detecting negative 

changes. 

Visually, the bright patterns observed in LR across 

all image combinations can be interpreted as flood 

inundation. However, given the threshold applied, it 

appears challenging to ascertain whether the changes 

are positive or negative, directly associated with the 

flood inundation. In comparison to the single image 

during the flood shown in Figure 3, only LRC3 

demonstrates a comparable pattern, aligns with the river 

flow pattern, and disperses in the surrounding area, 

although, on the other hand, it appears to be 

overestimated.   Therefore,  selecting  the   appropriate. 

The threshold is essential for enhancing the 

precision of the generated map [17][15]. Moreover, a 

technique that satellite imagery-based flood 

interpretation should consider is hydrological 

connectivity patterns and types of land cover [2][18]. In 

contrast to LRC4, it appears to be a false alarm, as it 

does not connect with the hydrological pattern; the 

resulting pattern is more linked to the residential zone 

(yellow border in Figure 8). 

 

 

Figure 8. LR and LRC of LR3 and LR4 

3.3. Evaluation 

The dynamics of the Earth's surface during a flood 

are of great importance to consider, as it will affect the 

characteristics of the SAR signal backscatter. 

Inundation in urban areas and vegetation results in the 

phenomenon of double-bounce scatter, which is caused 

by the complex interactions between radar signals, 

structures, or trees, and the water itself [2][15]. 

Furthermore, inundation impacts the changes in surface 

roughness, potentially causing extreme specular 

reflections that will affect backscatter intensity [19]. 

Flooding, often accompanied by high rainfall intensity, 

can also affect soil moisture levels, and high moisture 

levels correspond to a high dielectric constant [20]. 

This, in turn, influences the variations in backscatter 

intensity, considering that SAR is sensitive to these 

dielectric characteristics [21]. 

This study's evaluation involves comparing the 

classification results from EM Cluster Analysis with 

single images recorded during flooding. Furthermore, a 

comparison is carried out among the classification 

results based on inundation sample points obtained 

from historical data in the field. The results are 

presented in the following Figure 9. 

According to the image, it is apparent that LR4 and 

LR3 sequentially generate the most extensive flood 

inundation classes, with areas of 501.53 ha and 686.98 

ha, respectively (Table 3). A visual assessment reveals 

a substantial potential for overestimation, as indicated 

by the numerous bright areas interpreted as water 

bodies. This phenomenon is suspected to arise from the 

double-bounce effect, resulting from either temporary 

flooding of vegetated areas or changes in surface 

roughness, which distort the backscatter signal [8].  

 

Table 3. The extent of the classified log ratio (CLR) 

Class output Area (Ha) Count (polygon) 

CLR1 352.81 1,842 

CLR2 229.93 1,341 

CLR3 501.53 1,524 

CLR4 686.98 2,083 
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Figure 9.  Evaluation of flood inundation 

according to LR1 (a), LR2 (b), LR3 (c), and LR4 

(d) 

CLR1 (Fig. 9a) and CLR2 (Fig. 9b) exhibit 

narrower extents of 352.81 ha and 229.93 ha, 

respectively. When compared to CLR3 (Fig. 9c) and 

CLR4 (Fig. 9d), these classifications show a reduced 

presence of noise. The distortions that occur are 

predominantly in residential areas along the main 

roads, indicating that this combination is seemingly 

more responsive to this specific land cover type. The 

LR1 combination seems to delineate water bodies with 

a slightly greater extent than LR2. This is likely 

attributed to the cross-polarization characteristics, 

which tend to include more noise than co-polarized 

data [7]. 

This investigation has also involved the 

consolidation of the four classification results, resulting 

in a new geometric feature that represents the 

overlapping area and inherits attributes from all 

intersecting input layers [22]. The output (latter called 

CLRI) can be observed in Figure 10. The area derived 

from this procedure is the least extensive, while 

simultaneously demonstrating the minimal occurrence 

of errors in detecting non-water objects. 

The classification results were also evaluated with 

data from historical field surveys. A total of 111 flood 

inundation points have been recorded for subsequent 

overlay analysis. The results are displayed in Table 4. 

Tabel 4. evaluation of classification results 

Result CLR1 CLR2 CLR3 CLR4 CLRI 

Confirmed 73 75 102 58 30 

Persentage 65.77 67.57 91.89 52.25 27.03 

 

 

Figure 10. Intersection layer 

 

CLR3 has verified the presence of flooding at 102 

sites, achieving a detection rate of 91.89% for the test 

points. The number of estimated inundations that are 

unassociated and distant from the river raises concerns 

that the results may represent false alarm change pixels. 
This situation is a consequence of the intricate 

interactions between SAR signals and certain types of 

land cover, including vegetated areas. 

A similar pattern is observed in CLR4. The results 

of the classification are only aligned with 58 test points, 

(a) 

(b) 

(c) 

(d) 
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and this does not correspond proportionately to the 

amount of inundation that has occurred. By integrating 

cross and co-polarization through the log ratio operator, 

it seems to accentuate the VH band, which is indicative 

of water reflection. However, this could result in an 

overestimation [23][24]. Moreover, it generates more 

flooded pixels than the combinations of the same 

polarizations. 

CLR1 and CLR2 demonstrate a commendable 

ability to detect inundation, achieving rates of 65.77% 

and 67.57%, respectively. The use of the same 

polarization combination appears to effectively reduce 

speckle noise in SAR images. This may elucidate why 

some researchers prefer the combination of LR1 and 

LR2 over the two previous combinations. Nevertheless, 

undeniable inaccuracies are still apparent, such as the 

erroneous labeling of dwelling attributes as flood 

inundation. To enhance reliability, it is essential to 

undertake several additional measures, including the 

removal of pixels identified as residential, eliminating 

permanent water bodies, discarding areas with slopes 

exceeding 5%, and excluding areas smaller than 8 

pixels [9].  

4. Conclussion 

Essentially, the log ratio output across all 

combinations is capable of displaying a sufficiently 

contrasting estimation of flood inundation in 

comparison to the surrounding areas. However, LR3 

and LR4 still exhibit patterns that correspond to specific 

land cover types. Changes in LR1 and LR2 can 

effectively capture both decreases and increases in 

intensity, while LR3 only captures increases in 

intensity, and the intensity changes in LR4 are 

predominantly characterized by decreases in intensity. 

CLR1 and CLR2 provide more reliable flood inundation 

estimation than CLR3 and CLR4, which appear to be 

visually overestimated. With several post-classification 

adjustments, it is feasible to achieve improved 

estimations of flood inundation.  
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